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Abstract This is a review on the Kac Master Equation. Various issues will be
presented such as the resolution of Kac’s conjecture about the gap for the three
dimensional hard sphere gas, entropic propagation of chaos and other topics such as
systems coupled to reservoirs and thermostats. The discussion is informal with few
proofs and those who are presented are only sketched.
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1 The one dimensional Kac model

It is the aim of this article to give an overview of a program to which Maria Carvalho
contributed greatly and to show that her work has instigated further development in
this area. In much of her career she worked on fundamental problems like to formu-
late the notion of equilibrium and to describe how systems that are out of equilib-
rium tend towards it. One particular fruitful avenue she pursued with collaborators
is an approach to kinetic theory through master equations.

The standard description of a classical gas, going back to Boltzmann [2], is to
replace the evolution equation of the interacting many body problem by an effec-
tive equation describing the evolution of marginals, known as the Boltzmann equa-
tion. Despite heroic efforts by Lanford and others [25], [19], there is no satisfac-
tory derivation of this equation from microscopic dynamics. There was substantial
progress by Bodineau, Gallagher and Saint Raimond [1] who gave a rigorous deriva-
tion of the linearized Boltzmann equation describing a hard sphere gas near equi-
librium. This seems to be the first rigorous derivation of an effective equation from
microscopic dynamics.

A less ambitious approach is to construct models that illuminate certain ques-
tions of interest. Many of the difficulties stemming from a fundamental description
are ignored in such an approach. However it has brought some of the issues into a
sharp focus and may lead to new ideas on how to proceed with the ‘fundamentalist
program’. The pedagogical aspect is an added bonus of this phenomenological ap-
proach. Maria Carvalho and Eric Carlen introduced one of the authors to these kind
of questions, in particular to an approach based on the Kac model. This paper is a
review of some of the work done over the years, but we also present some newer
developments, albeit with a light touch.

The Kac Master Equation describing the evolutions of the probability density
F(vN , t) for the velocities of a one-dimensional spatially homogeneous gas of N
particle is given by

∂F(vN , t)
∂ t

=
N(N
2

)∑
i< j

[
1

2π

∫ 2π

0
F(vN(i, j;θ), t)dθ −F(vN , t)

]
(1)

with initial condition F(vN ,0) = F0(vN), where vN = (v1, . . . ,vN) is the velocity
vector of the particles,

vN(i, j;θ) = (v1, . . . ,v∗i (θ), . . . ,v
∗
j(θ), . . . ,vN) (2)

and
v∗i (θ) = vi cosθ + v j sinθ , v∗j(θ) =−vi sinθ + v j cosθ (3)

are the post-collisional velocities of the pair i, j undergoing this collision. Thus, the
collisions are described by two dimensional random rotation. We assume that the
density F is symmetric in the particle labels which is preserved by the time evolu-
tion. For a more detailed probabilistic explanation see [22],[7], [8] and especially
[23]. It is useful to keep in mind that the rate at which a fixed particle collides with
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any other particle is independent of Nand equals 2 in our case. A good way of think-
ing about the evolution equation is to write it as

∂tF =−LNF ,where LN = N(I−Q) , (4)

where Q is the average over all rotations in the two dimensional coordinate hyper-
planes. The solution of the master equation is then

F(vN , t) = e−LN tF0(vN) . (5)

Since the collisions are modeled by two dimensional rotations, the kinetic energy

N

∑
j=1

v2
j

is preserved and it suffices to consider the master equation (1) for densities f ∈
L1(SN ,dσN) where SN =

√
NSN−1 and dσN is the uniform probability measure on

the sphere. We fix the total kinetic energy to be N, so that the average kinetic energy
per particle is 1. If one requires for a one-dimensional collision that in addition the
energy and the momentum are preserved, the only possible collisions would be that
either the particles keep their velocities and pass through each other or exchange
them. This would leave the symmetric density F invariant and hence not interesting.

It is fairly obvious that for product densities, i.e. densities of the form

FN(vN) :=
∏

N
j=1 f (v j)∫

SN ∏
N
j=1 f (v j)dσN

, (6)

the product structure is not strictly preserved under the evolution. It is, however,
preserved asymptotically as the particle number tends to infinity, a fact known as
propagation of chaos, a notion that goes back to Boltzmann [2]. Consider a sequence
{FN(vN)}∞

N=1. Assume that there exists a function f : R→ R+ such that for any
k ∈ N and any bounded continuous function φk : Rk→ R we have

lim
N→∞

∫
SN

FN(vN)φk(v1, . . . ,vk)dσN =
∫
Rk

k

∏
j=1

f (v j)φk(v1, . . . ,vk)dv1 · · · dvk ,

then we say that the sequence FN is chaotic with limiting marginal f . The simplest
example is the function 1 on the sphere SN which is easily seen to be chaotic with
limiting marginal

γ(v) := (2π)−1/2e−v2/2 , (7)

by a calculation that goes back to the 19th century to Mehler, Maxwell and Poincaré.
Kac’s theorem states that chaos is propagated.

Theorem 1 (Kac Theorem). Let FN(vN) be a chaotic sequence with limiting
marginal f0(v) and FN(vN , t) be the solution of the Kac Master Equation with initial
condition FN(vN). Then FN(vN , t) is chaotic with limiting marginal f (v, t) and this
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function satisfies the Kac-Boltzmann Equation

∂ f (v, t)
∂ t

=
1
π

∫ 2π

0

∫
∞

−∞

[ f (v∗(θ), t) f (w∗(θ), t)− f (v, t) f (w, t)]dw. . (8)

with f (v,0) = f0(v).

This theorem is proved in [22] and is the antecedent of many results of similar
type. It was shown in [12] that any distribution on R is the limit marginal of a
chaotic sequence and hence this leads to an existence result for solutions of the
Kac-Boltzmann equation.

It is not very difficult to see that the semi-group generated by the Kac Master
Equation is ergodic in the sense that the only invariant distribution, i.e. equilibrium,
is the function 1 on SN . Thus, 0 is a nondegenerate eigenvalue of LN . Moreover,
one observes that the generator LN of this semigroup is a selfadjoint non-negative
operator on L2(SN ,dσN) and according to what was said before, the function 1 spans
the null space of this operator. Thus, 0 is a simple eigenvalue of LN . The next largest
eigenvalue ∆N is called the gap. A simple application of the spectral theorem shows
that FN(vN , t) converges to 1 as t → ∞ in L2(SN ,dσN) with a rate that is given by
the gap

‖FN(·, t)−1(·)‖2 ≤ e−∆N t‖FN(·,0)−1(·)‖2 .

Kac [22] posed the conjecture that there exists a positive constant c > 0 independent
of N such that ∆N ≥ c for all N. This conjecture was eventually proved in [21]. In
[7] it was further shown that

∆N =
1
2

N +2
N−1

>
1
2
.

The Kac Boltzmann equation has Gaussian functions such as (7) as equilibria and it
is customary to linearize the Kac-Boltzmann equation about one of these equilibria.
In this way one obtains some information about the speed of approach to equilibrium
by computing the gap for the generator of this linear equation. Interestingly, this is
furnished by the Kac master equation in the limit as N→ ∞. The linearized version
of the Kac-Boltzmann equation has the gap eigenvalue 1/2 which is the limit of ∆N
as N→ ∞. But more is true. The gap eigenvalue for the Kac master Equation is not
degenerate and the eigenfunction (up to normalization) is given by

N

∑
j=1

[
v4

j −
3

N(N +2)

]
.

As N → ∞, the first marginal of this function converges to a fourth order hermi-
tian polynomial which is the gap eigenfunction of the linearized Kac-Boltzmann
equation. For details the reader may consult [8].



Approach to equilibrium for the Kac model 5

2 Momentum preserving collisions

As mentioned before, two particle collisions that preserve the kinetic energy and
momentum are not very interesting in one dimension; particles either exchange the
velocity or pass through each other without interaction. One can certainly write a
Kac-type master equation for realistic collisional models such as hard spheres in
three dimensions. Not only are the collisions energy and momentum preserving but
there is the added complexity that the scattering cross section may depend on the
momentum transfer |vi− v j|. There are multiple ways to parametrize the collision
process and one convenient version used here is the swapping map

v∗i (σ) =
vi + v j

2
+
|vi− v j|

2
σ ,

v∗j(σ) =
vi + v j

2
−
|vi− v j|

2
σ ,

(9)

where σ ∈ S2. To describe the collisions in the one dimensional case, we assumed
that the angle θ was uniformly distributed. In the three dimensional case, we assume
that there is given a function b : [−1,1]→ R+ with∫

S2
b(σ ·σ ′)dσ =

1
2

∫ 1

−1
b(t)dt = 1 . (10)

Here dσ is the uniform probability measure on S2. For hard spheres, b = 1, see
[11] for an explanation how the various parametrizations are connected. The model
analogous to (1) is given by

∂F
∂ t

(vN , t) = −LN,α F(vN , t))

= − N(N
2

)∑
i< j
|vi− v j|α

[
F(vN , t)− [F ](i, j)(vN , t)

]
(11)

where

[F ](i, j)(vN , t) =
∫

S2
b
(

σ ·
vi− v j

|vi− v j|

)
F(Ri, j,σ vN , t)dσ (12)

and

(Ri, j,σ v)k =


v∗i (σ) k = i,
v∗j(σ) k = j,
vk k 6= i, j.

The case of hard spheres is α = 1 but it is of advantage to keep the power 0 ≤
α ≤ 2. Since the collisions preserve energy and momentum, it suffices to consider
distributions on the surface given by the equation
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1
N

N

∑
j=1
|v j|2 = E ,

1
N

N

∑
j=1

v j = p .

where E resp. p is the kinetic energy resp. momentum per particle. These equations
determine a sphere in R3N of co-dimension 4 and we denote this space by SN,E,p.
As before, we denote the uniform probability measure on this space by dσN,E,p.

Propagation of chaos is much harder to prove for this model. The difficulty is that
the factor |vi−v j|α can grow with N. This problem, was first solved in a qualitative
fashion in [27], and later in a quantitatively by Mischler and Mouhot in their seminal
paper [26]. Likewise, to find a lower bound on the gap that is uniform in the number
of particles is much harder. Ironically, one of the reasons for this difficulty is that
the factor |vi− v j|α can be small and suppress collisions. The gap is defined as

∆N,α(E, p) = inf
{
E(F,F) : 〈F,1〉L2(SN,E,p)

= 0 and ‖F‖2
L2(SN,E,p)

= 1
}
,

(13)
where E(F,F) = 〈F,LN,α F〉L2(SN,E,p)

, i.e.

E(F,F) =

N
2

(
N
2

)−1

∑
i< j

∫
SN,E,p

∫
S2
|vi− v j|α b

(
σ ·

vi− v j

|vi− v j|

)
[F(vN)−F(Ri, j,σ vN)]

2 dσ dσN .

(14)

By a unitary transformation mapping L2(SN,1,0) to L2(SN,E,p) (see [9]) one finds
that

∆N,α(E, p) = (E−|p|2)α/2
∆N,α(1,0) , (15)

and we call ∆N,α(1,0) the ‘spectral gap for the Kac model’. The following theorem
is proved in [9]:

Theorem 2 (Spectral gap for the Kac Model with 0≤ α ≤ 2). For each continu-
ous non-negative even function b on [−1,1] satisfying (10), and for each α ∈ [0,2],
there is a strictly positive constant K depending only on b and α , and explicitly
computable, such that

∆N,α ≥ K > 0 (16)

for all N. In particular, this is true with b given by (10) and α = 1, the 3-dimensional
hard sphere Kac model.

3 Entropy

Unfortunately, the gap is not a very good notion to measure the rate of approach to
equilibrium. It is generically the case that the L2 norm of a probability distribution
on L2(

√
NSN−1) increases like cN where c > 1. This is easy to see for chaotic se-
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quences. The preferred notion is entropy which for the simple Kac model explained
at the beginning is given by

H(F |1) =
∫
SN

F logF dσN .

H(F |1) is called ‘entropy’ which deviates from the usual notion in physics by a
sign. The notation H(F |1) also indicates that one is considering a relative entropy,
in our case with respect to the 1 distribution. We note that in contrast to the L2 norm,
the entropy is extensive, i.e. for a state that is a product state F = ∏

N
j=1 f (v j) we see

that

H(F |1) =
N

∑
j=1

∫
√

NSN−1
F log f (vi)dσN ≈ N

∫
√

NSN−1
f (v) log f (v)dσN .

It is not very difficult to see that the entropy decreases to zero along the Kac flow,
although little is known about the rate. Returning to the simplest version of the Kac
model, it was shown in [28] that

H(F(t)|1)≤ e−
2t

N−1 H(F0|1) .

The proof consists of the analysis of entropy production. Taking the derivative

d
dt

∣∣∣
t=0

H(F(t)|1) =−N
∫
√

NSN−1
(I−Q)F logF dσN

one obtains the negative rate of dissipation and the entropy production is then de-
fined by

ΓN = inf
F

N
∫√

NSN−1(I−Q)F logFdσN

H(F |1)
.

Villani [28] proved that

ΓN ≥
2

N−1
.

That this estimate is almost optimal was shown by Einav [15]. Exponential decay of
the entropy with a rate that is independent of N is known as Cercignani’s conjecture.
For details the reader may consult [28]. Although Einav’s result does not preclude
that the entropy might decrease eventually at an exponential rate, one could consider
this as evidence against Cercignani’s conjecture for the Kac model. The challenge
is to show that the evolution of Einav’s trial functions has small entropy decay for
large times.

There are modifications of the Kac model with one dimensional collisions
worked out by Villani [28] for which Cercignani’s conjecture is true. These modi-
fications accelerate the rate of collisions between the particles i and j by replacing
the collision rate by (1+ v2

i + v2
j). Unfortunately nothing can be inferred from that

about the original model. It is interesting that Villani’s result is not known to hold
when the collision rate is merely replaced by v2

i + v2
j . The problem is that for small
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velocities the collision rate is sharply depressed. Likewise, to our knowledge, simi-
lar results for the three dimensional ‘hard sphere’ collisions in which α = 2 are not
known.

There is, however, another interesting link between the Kac-Boltzmann equa-
tion and the Kac master equation. In Section 1, we mentioned the close connection
between the gap and the gap eigenfunction of the Kac model and the linearized Kac-
Boltzmann equation. This can be carried further using the notion of entropic chaos.
A sequence {FN}∞

N=1 is entropically chaotic with limiting marginal f if it is chaotic
and in addition satisfies

lim
N→∞

H(FN |1)
N

= H( f |γ) .

In [12] it was shown that for a given probability density f on the real line with∫
R

f (v)v2 dv = 1 , H( f |γ)< ∞

there exists an entropically chaotic sequence with limiting marginal f . Using this
connection one is able to transfer entropy decay of the Kac evolution to entropy
decay for the Kac-Boltzmann equation. Unfortunately, the current entropy decay
estimates are not strong enough to draw any quantitative conclusions.

From a practical point of view, one rarely considers systems that are very far
from equilibrium. Usually one is in a situation in which only a part of the system
is out of equilibrium. One way to model such a situation, is to couple a system of
M particles to a larger one. The simplest possibility, pursued in [6], is to couple the
finite system to a thermostat. By definition, a thermostat does not change during the
interaction with the system, and this can be modeled by

∂ f
∂ t

=−λM(I−Q) f −µ

M

∑
j=1

(I−R j) f =:−LT f . (17)

where

R j f :=
∫ 1

2π

∫ 2π

0
e−πw∗2j (θ) f (v j

M(θ ,w))dθ dw

and

v j
M(θ ,w) = (v1, ...,v j cos(θ)+wsin(θ), . . . ,vM),

w∗j(θ) = −v j sin(θ)+wcos(θ).

The idea is that particle j interacts with a particle from the thermostat whose velocity
distribution is given by a Gaussian of temperature 2/π . Note, using these units has
the advantage that the Gaussian function e−πv2

is normalized. It is easy to see that
the Gaussian γM = e−π|vM |2 is the unique equilibrium state for the system. It was
shown in [6] that for an initial condition f0 with finite entropy

H( ft |γ)≤ e−µt/2H( f0|γ) .
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Since the equilibrium state is a product function, one would hope to obtain a stronger
version of propagation of chaos, namely one that is uniform in time. This was shown
in [14] with an explicit error term proportional to N−1/3.

It is natural to think that the evolution of the system is similar if one couples
the system to a finite reservoir with a large number of particles. The system is then
described by a probability distribution F(v,w, t) = (v1, . . . ,vM,wM+1, . . . ,wM+N),
where we label the particles from 1 to M +N. Thus, one considers the evolution
equation

∂tF =−(λSLMF +λRLN +µIM,N)F =:−LRF (18)

where

LMF := 2
M−1 ∑

M
i< j=1(I−Ri, j)F

LNF := 2
N−1 ∑

M+N
i< j=M+1(I−Ri, j)F

IM,NF := 1
N ∑

M
i=1 ∑

M+N
j=M+1(I−Ri, j)F

with the initial condition

F0(v,w) = f0(v)e−π|v|2 .

The kinetic energy is no longer preserved and therefore one has to consider distri-
butions in RM+N . The collisions are here modeled in one dimension as follows

Ri, jF(u) :=
1

2π

∫ 2π

0
F(u1, . . . ,u∗i (θ), . . . ,u

∗
j(θ), . . . ,uM+N), u ∈ RM+N , (19)

where
u∗i (θ) := ui cosθ +u j sinθ , u∗j(θ) :=−ui sinθ +u j cosθ .

The generator LM describes the collisions among the M particles in the considered
system, LN describes the collisions among the N particles in the reservoir and IM,N
the collisions between the particles in the system and the reservoir. Note that the
collision rate of a particle in the system with any particle in the reservoir is µ . The
interesting point about this evolution is that although initially the reservoir is in
an equilibrium it does not stay that way in the course of the evolution. This is in
contrast to the thermostat. One would, however, expect that the solution F(v,w, t) is
well approximated by the solution of the thermostat problem for large N. That this
is the case was shown in [4] using the Gabetta-Toscani-Wennberg metric [17]

d2( f ,g) := sup
ξ 6=0,η 6=0

| f̂ (ξ ,η)− ĝ(ξ ,η)|
|ξ |2 + |η |2

. (20)

where f̂ is the Fourier transform of f and one has to impose that the first moments
of f and g vanish and the second moments of f and g are finite.

Theorem 3. Let F(v,w) be the initial distribution for the system plus reservoir of
the form



10 Federico Bonetto, Eric A. Carlen, Lukas Hauger, and Michael Loss

F0(v,w) = f0(v)γN(w).

with f0 symmetric and satisfying the moment conditions mentioned above. Assume
moreover that ∫

v4
i f0(v)dv = E4 < ∞, (21)

then for every t > 0 we have

d2

(
eLRtF0,eLT tF0

)
≤ KM

N

(
1− e−

µ

4 t
)√

d2( f0,γN)(F4 +d2( f0,γN)) . (22)

with F4 = 3π4
(

E4 +
π+2
π2

)
and K = 16

√
3 and where γN(w) = e−π|w|2 .

This theorem shows, that if one starts with an initial condition in which the reservoir
is in equilibrium, then the two evolutions, the one with the thermostat and the one
with the finite reservoir, stay close uniformly in time at least for the case where
N >> M. The reservoir does never move far from its equilibrium.

Unfortunately, the above result does not allow to draw any conclusions about the
decay of entropy for the finite reservoir problem. A reasonable proposal, which is in
some ways closer to Boltzmann’s ideas [2], is to find good rates for entropy decay
for the marginals of the distributions. Returning to (18) one focuses on the marginal

f (v, t) =
∫
RN

e−LRtF0(v,w)dw

and considers the relative entropy

H( f (·, t)|γM) .

Note that γM is the equilibrium state for the system coupled to the thermostat. How-
ever, it is not the equilibrium state for the system coupled to the reservoir. The
following theorem is proved in [5]

Theorem 4. For any positive integers N,M we have that

H( f (·, t)|γM)≤
(

M
N +M

+ e−
µ(N+M)

2N t N
N +M

)
H( f0(·)|γM) . (23)

The entropy relative to the Gaussian cannot converge to zero, because the Gaussian
is not the equilibrium state. The theorem, however, states that if the reservoir is large
compared to the system, then the entropy relative to the Gaussian decreases at an
exponential rate which is uniform in N. In fact, as N→ ∞ this converges to the rate
of the thermostat.
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4 Information

The proof of Theorem 4 in [5] is rather cumbersome and required the sharp form of
the Brascamp-Lieb inequalities. In this section, we indicate a relatively simple proof
using the notion of information which was published in [3] for a one-dimensional
model. In [18], this was generalized to multidimensional models with a different
collision mechanism. We explain the ideas for the case of a three dimensional sys-
tem undergoing momentum preserving collisions. The law governing the collision
between particles i and j is given by

v∗i (σ) = vi− (σ · (vi− v j))σ , v∗j(σ) = v j +(σ · (v j− vi))σ , σ ∈ S2 , (24)

while the velocities of the other particles are fixed. We set

Ri, jF(u) =
∫
S2

F(u1, . . . ,u∗i (σ), . . . ,u∗j(σ), . . . ,uM+N)ρ(dσ) (25)

where ρ(dσ) is a probability measure on S2. Note that this is a much simpler model
than the three dimensional hard sphere model. The collision cross section is inde-
pendent of the momentum transfer.

The model under consideration is the same as in equation (18) except that we
replace all the collision operators Ri, j of (19) by (25). As before one starts with the
initial condition

F0(v,w) = f0(v)e−π|w|2

and we label the variables as

F(v,w, t) = F(v1, . . . ,vM,wM+1, . . . ,wM+N , t)

where F(v,w, t) is the probability distribution on R3M+3N given by e−LRtF0. As
before we consider the marginal

f (v, t) =
∫
R3N

F(v,w, t)dw

and the relative entropy

H( f (·, t)|γM) =
∫
R3M

f (v, t) log
f (v, t)
γM(v)

dv

where γM(v) = e−π|v|2 . The following theorem is proved in [18].

Theorem 5. Assume that the initial distribution f0 ∈ L1(RM) has finite second mo-
ment and

√
f0 ∈ H1

(
RM
)
. Assume further that∫

S2
σiσ j ρ(dσ) =C ·δi j , (26)

for some constant C ∈ R. Then
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H( f (·, t)|γM)≤
(

M
M+N

+
N

M+N
e−

µ

3
M+N

N t
)

H( f0|γM) . (27)

The time evolution keeps the Gaussian e−π[|v|2+|w|2] fixed and it will be conve-
nient to set

F(v,w, t) = G(v,w, t)e−π[|v|2+|w|2] ,

where
G(v,w, t) = [e−LRtg0](v,w) .

With
f0(v) = g0(v)e−π|v|2 , f (v, t) = g(v, t)e−π|v|2

we find that
g(v, t) =

∫
R3N

G(v,w, t)e−π|w|2dw

and
H( f (·, t)|γM) =

∫
R3M

g(v, t) logg(v, t)e−π|v|2dv .

We also note that the time evolution for G is essentially the same as the one for F .
In this new representation, we define the information

I(g) =
∫
R3M

|∇g(v)|2

g(v)
e−π|v|2dv .

The following theorem about the decay of information is proven in [18]. A sketch
of the proof is given at the end of the section.

Theorem 6. Assume that the initial distribution f0 ∈ L1(RM) has finite second mo-
ment and

√
f0 ∈ H1(RM). Assume further that∫

S2
σiσ j ρ(dσ) =C ·δi j , (28)

for some constant C ∈ R. Then

I(g(·, t))≤
(

M
M+N

+
N

M+N
e−

µ

3
M+N

N t
)

I(g0) . (29)

Theorem 5 can be derived from Theorem 6. To see this, consider the Ornstein-
Uhlenbeck semigroup on R3M+3N defined as

PsG(v,w) =
∫
R3M+3N

G(e−s(v,w)+
√

1− e−2s(x,y))e−π[|x|2+|y|2] dxdy .

It is well known and easy to check that

H(g) =
∫

∞

0
I(PM,sg)ds,
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where we denoted by PM,s the Ornstein-Uhlenbeck semigroup on R3M . To use this
connection between entropy and information, we first claim that for all s, t ≥ 0

Pse−LRt = e−LRtPs .

The collision law is given by a reflection in R3M+3N which commutes with Ps, i.e.
the operators Ri, j representing the reflections of a single collision process commute
with Ps. Since the time evolution operator is an average over reflections, the claim
follows.

Further, we observe that∫
R3N

PsG(v,w)e−π|w|2 dw

=
∫

G(e−sv+
√

1− e−2sx,e−sw+
√

1− e−2sy)e−π[|x|2+|y|2]e−π|w|2 dxdydw

which by choosing variables p = e−sw+
√

1− e−2sy and q =−
√

1− e−2sw+ e−sy
equals ∫

G(e−sv+
√

1− e−2sx, p)e−π[|x|2+|p|2+|q|2] dxdpdq

=
∫

G(e−sv+
√

1− e−2sx, p)e−π[|x|2+|p|2] dxdp

= PM,sg(v) .

This enables us to compute

H(g(·, t)|γM) =
∫

∞

0
I(PM,sg(v, t))ds =

∫
∞

0
I
(∫

R3N
PsG(v,w)e−π|w|2 dw

)
ds

=
∫

∞

0
I
(∫

R3N

[
Pse−LRtg0

]
(v,w)e−π|w|2 dw

)
ds .

Using that Pse−LRt = e−LRtPs, we get

H(g(·, t)|γM) =
∫

∞

0
I
(∫

R3N

[
e−LRtPsg0

]
(v,w)e−π|w|2 dw

)
ds

=
∫

∞

0
I
(∫

R3N

[
e−LRtPM,sg0

]
(v,w)e−π|w|2 dw

)
ds.

Applying theorem 6 to the function [PM,sg](v, t) yields the desired bound

H(g(·, t)|γM)≤
(

M
M+N

+
N

M+N
e−µ

M+N
3N t
)∫

∞

0
I(PM,sg0(v))ds

=

(
M

M+N
+

N
M+N

e−µ
M+N

3N t
)

H(g0|γM).
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Proof (Sketch of a proof of Theorem 6). We write the master equation as

∂tF = Λ [Q− I]F

where Λ = µM+λSM+λRN and

Q =
2λS

(M−1)Λ

M

∑
i< j=1

Ri, j +
2λR

(N−1)Λ

M+N

∑
i< j=M+1

Ri, j +
µ

NΛ

M

∑
i=1

M+N

∑
j=M+1

Ri, j

which is a convex combination of the Ri, j. Thus we may abbreviate this as

Q = ∑
pairs

λ
α Rα .

with ∑α λ α = 1. The time evolution can then be written as a sum over collision
histories

eLt = e−Λ t
∞

∑
k=0

(Λ t)k

k!
Qk = e−Λ t

∞

∑
k=0

(Λ t)k

k! ∑
αk

λ
αk Rαk ,

where we used multi index notation. Each operator Rαk = Rαk · · ·Rα1 is now a prod-
uct of pair collision operators Rα = Ri, j. The action on the initial condition g0 of
k-collisions is given by

[Rαk g0](v,w) =
∫

dρ(σ1) · · ·dρ(σk)g0(Mαk(σ k)(v,w))

where the 3(M+N)×3(M+N) orthogonal matrix Mαk(σ k) is a product of collision
matrices.1 We use the notation σ k = (σk, . . . ,σ1). Writing

Mαk(σ k) =

[
Aαk(σ k) Bαk(σ k)
Cαk(σ k) Dαk(σ k)

]
,

we find, since g0 is only a function of the variable v, that

[Rαk g0](v,w) =
∫

dρ(σ1) · · ·dρ(σk)g0(Aαk(σ k)v+Bαk(σ k)w)) .

Note that the last expression does not depend on Cαk(σ k) and Dαk(σ k). With the
notation

g0,αk(v) =
∫
RN

[Rαk g0](v,w)γN(w)dw ,

1 Note that the collision mechanism (24) is linear, i.e it can be represented by a matrix(
v∗i (σ)
v∗j(σ)

)
= Mσ

(i, j)

(
vi
v j

)
, Mσ

(i, j) :=
(

I−σ ⊕σ σ ⊕σ

σ ⊕σ I−σ ⊕σ

)
. (30)

Extending Mσ

(i, j) such that it leaves all other particles invariant, we obtain a collision matrix Mσ

(i, j)

acting on R3M+3N that satisfies F(u1, . . . ,u∗i (σ), . . . ,u∗j(σ), . . . ,uM+N) = F(Mσ

(i, j)u).
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we find using the convexity of information that

I(g(·, t))≤ e−Λ t
∞

∑
k=0

(Λ t)k

k! ∑
αk

λ
αk I(g0,αk(·)) .

This reduces the problem to showing the decay of information caused by a sequence
of collisions. Note that this is now separated from the evolution in time.

A straightforward computation using convexity and the fact that Mαk(σ k) is an
orthogonal matrix, shows that

I(gαk(·))

≤
∫

ρ(dσ1) · · ·ρ(dσk)
∫
R3M

(∇g0)
T (v)Aαk(σ k)

T Aαk(σ k)(∇g0)(v)
g0(v)

γM(v)dv .

After a somewhat more difficult calculation using the symmetry assumption on the
probability measure ρ , one can see that

e−Λ t
∞

∑
k=0

(Λ t)k

k! ∑
αk

λ
αk

∫
ρ(dσ1) · · ·ρ(dσk)Aαk(σ k)

T Aαk(σ k)

=

[
M

M+N
+

N
M+N

e−
µ

3
M+N

N t
]

I3M .

The last three (in-)equalities prove theorem 6. For the details we refer the reader to
[18]. ut

5 A quantum Kac model

Pair collisions of molecules, and more generally, pair interactions of microscopic
particles, are properly described by quantum mechanics. It is natural to ask how
quantum mechanics can be incorporated in Kac type models. Towards this end, let
us return to (1) and write it another way, which, while a little more complex, opens
an interesting door. It is well known since the work of Koopman [24] and von Neu-
mann [29] that the classical mechanical time evolution can be written in terms of
unitary flows on the Hilbert space consisting of the phase space equipped with Li-
ouville measure (which is preserved by the classical flow). This perspective brings
the classical and quantum dynamics close together, and is our point of departure.

Introduce the Hilbert space L2(Rn), and define for 1≤ i < j≤N, θ ∈ [0,2π), the
unitary operator Ui, j,θ by

Ui, j,θ ψ(vN) = ψ(vN(i, j;θ))

where vN(i, j;θ) is the pair rotation of vN specified in (2) and (3). To any probability
density F on RN , associate the multiplication operator ρF on L2(Rn) by
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ρF ψ(vN) := F(vN)ψ(vN).

Note that ρF is in general an unbounded positive operator. It is then easy to check
that

Ui, j,θ ρFU∗i, j,θ = ρG where G(vN) = F(vN(i, j;θ)) .

In particular, for each i, j and θ , Ui, j,θ ρFU∗i, j,θ (vN) has the form ρG where G is
another probability density on RN

(
N
2

)−1

∑
i< j

(
1

2π

∫ 2π

0
ρF(vN(i, j;θ))dθ

)

=

(
N
2

)−1

∑
i< j

(
1

2π

∫ 2π

0

[
Ui, j,θ ψ(vN)ρFUi, j,θ ψ(vN)

∗(vN)
]

dθ

)
=:Q(ρF) . (31)

We can then rewrite (1) as

∂

∂ t
ρF(t) = N

[
Q(ρF(t))−ρF(t)

]
. (32)

In kinetic theory, the collisions take place on a much more rapid time scale than
in Kac Master Equation, and thus are instantaneous. Each unitary transformation
Ui, j,θ in this Koopman-von Neumann picture represents the final phase space trans-
formation associated to one type of a completed collision between particles i and j.
The operatorQ represents an average over the output densities for all kinematically
possible collisions.

Between collisions, when the particles are not interacting, the energy is simply
given by H := ∑

N
j=1 v2

j , but this does not encode the part of the dynamics that drives
the collisions. However, the absolutely crucial point is that with H regarded as a
multiplication operator, for each i, j and θ , Ui, j,θ HU∗i, j,θ = H. Thus H commutes
with the unitary describing each collision, which is the analytical expression of the
fact that the collisions conserve the energy in this Koopman-von Neumann picture.

In [13] this point of view was developed to define a Quantum Markov Semigroup
that describes pair collisions of quantum particles. The energy of a single particle is
given by a Hamiltonian h on a Hilbert space H which we take to be finite dimen-
sional for simplicity. A state of the system of N particles is described by a density
matrix ρ on ⊗NH = HN , i.e. a self adjoint positive trace class operator with unit
trace. The role of the kinetic energy in the classical Kac model is now taken by the
N-particle Hamiltonian

HN =
N

∑
j=1

I⊗·· · I⊗hi⊗ I · · ·⊗ I .

One specifies the binary collisions by a family of unitary operators U(σ) on the two
particle Hilbert space H2 =H⊗H that commute with H2 = h⊗ I + I⊗ h. Here σ
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lives in a measure space (C,ν). The precise conditions will be given below. Note
that if we extend U(σ) to the other factors of the tensor product by the identity, then
U(σ) also commutes with HN . The collision operatorQ : B(H2)→B(H2) is given
by

Q(A) =
∫
C

U(σ)AU∗(σ)dν(σ)

where B(H2) denotes the space of bounded operators onH2. Note the parallel with
(31).

The measure ν is a probability measure and it is easily seen that Q is a trace
preserving map that is positivity preserving, in fact completely positive. Since U(σ)
commutes with H2 this collision process preserves energy, i.e. if all the eigenstates
of A have the same energy so does Q(A). Naturally, one wants that the collision of
particle 1 with particle 2 and the collision of particle 2 with particle 1 leads to the
same result. If V denotes the swap operation

V (φ ⊗ψ) = ψ⊗φ

then one imposes the condition that

{U(σ) : σ ∈ C}= {VU(σ)V ∗ : σ ∈ C}

and the map σ → σ ′ where VU(σ)V ∗ =U(σ ′) is a measurable transformation that
leaves ν invariant. It is also desirable that the collision satisfies local reversibility,
i.e. that

{U(σ) : σ ∈ C}= {U∗(σ) : σ ∈ C},

and the map σ → σ ′ where U∗(σ) = U(σ ′) is a measurable transformation that
leaves ν invariant. One easily sees that for any two operators A,B onH2 one has

Tr(A∗Q(B)) = Tr(Q(A)∗B)

i.e. the operation is self adjoint on the Hilbert space B(H2) with inner product
(A,B) = Tr(A∗B). We call (C,U,ν) satisfying these conditions a collision speci-
fication.

The Quantum Kac Master Equation is then

∂

∂ t
ρ(t) = N[Q(ρ)(t)−ρ(t)] , (33)

which is formally very similar to (32). We shall be interested in the same sort of
questions that we asked about solutions of (32). In particular, we shall be concerned
with the long time behavior, and in this context, the question of ergodicity is crucial.
Denote byA2 the commutative subalgebra of B(H2) consisting of all operators that
are of the form f (H2) where f : σ(H2)→ C is a continuous bounded function.
Obviously A2 is a subset of {U(σ) : σ ∈ C}′, the commutant of {U(σ) : σ ∈ C}.
We shall require that the two particle collisions are ergodic, that is
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A2 = {U(σ) : σ ∈ C}′ .

In this case, at least for N = 2, the steady state solutions of (33) are exactly the
density matrices ρ of the form ρ = f (H2) for some f . A natural question then
is when ergodicity at the level of 2 particles implies ergodicity at the level of N
particles.

5.1 Example

The following example taken from [13] is useful for understanding these concepts.
For the simplest possible example, take H = C2, so that H2 = (C2)⊗2. Define the

single particle Hamiltonian h by h =

[
0 0
0 1

]
. Identify C2⊗C2 with C4 using the

basis (
1
0

)
⊗
(

1
0

)
,

(
0
1

)
⊗
(

1
0

)
,

(
1
0

)
⊗
(

0
1

)
,

(
0
1

)
⊗
(

0
1

)
.

The standard physics notation for this basis is simply

|00〉 , |10〉 , |01〉 , |11〉 , (34)

which will be useful. With this identification of C2⊗C2 with C4,[
a1,1 a1,2
a2,1 a2,2

]
⊗
[

b1,1 b1,2
b2,1 b2,2

]
=: A⊗B is represented by

[
b1,1A b1,2A
b2,1A b2,2A

]
.

(Switching the order of the second and third basis elements swaps the roles of A and
B in the block matrix representation of the tensor product A⊗B.)

In this basis,

H2 =

[
0 0
0 1

]
⊗ I + I⊗

[
0 0
0 1

]
=


0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 2

 .

Therefore, the spectrum of H2 is {0,1,2} and

P0 =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 , P1 =


0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

 and P2 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

 .

Now define C = S1×S1×S1×S1 identifying each copy of S1 with the unit circle
in C so that the general point in σ ∈ C has the form σ = (eiϕ ,eiθ ,eiψ ,eiη). Then
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define

U(σ) :=


eiθ 0 0 0
0 eiψ cosθ −eiϕ sinθ 0
0 e−iϕ sinθ e−iψ cosθ 0
0 0 0 eiη


Choosing ν to be the uniform probability measure on C gives us a collision specifi-
cation (C,U,ν).

A simple computation shows that for every operator A on H2 = C2⊗C2 identi-
fied as the 4×4 matrix with entries ai, j using the basis (34),

Q(A) =
∫
C

dν(σ)U(σ)AU∗(σ) =


a1,1 0 0 0
0 1

2 (a2,2 +a3,3) 0 0
0 0 1

2 (a2,2 +a3,3) 0
0 0 0 a4,4


= a1,1P0 +

a2,2 +a3,3

2
P1 +a4,4P2 ∈ A2 . (35)

Therefore,

{U(σ) : σ ∈ C}′ ⊂ ran(Q)⊂A2 ⊂ {U(σ) : σ ∈ C}′ ,

showing that (C,U,ν) is ergodic.
Using these preliminaries it is now straightforward to write the corresponding

Quantum Master Equation (QME) as

∂tρ =−LN(ρ)

with

LN(A) = N
(

N
2

)−1

∑
i< j

[A−Qi, j(A)] (36)

and where the unitaries in the definition of Qi, j act nontrivially only on the i-th
and j-th factors in the tensor product ⊗NH. This is a trace preserving completely
positive map, i.e. a Quantum Evolution.

5.2 Propagation of chaos

A density matrix is symmetric if it is invariant under the swap operation between any
two factors in the tensor product ⊗NH. A sequence of symmetric density matrices
{ρN}∞

N=1 is chaotic with marginal ρ , or in short ρ-chaotic, if

lim
N→∞

Tr2,...,N ρN = ρ and lim
N→∞

Trk+1,...,N ρN =⊗k
ρ
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where Trk+1,...,N is the trace taken in the factors k+1, . . . ,N. A trivial example of a
chaotic sequence is ⊗Nρ , but one can also construct chaotic sequences that have a
sharply defined energy for large N.

We have (see [13])

Theorem 7. Let {U(σ) σ ∈ C} be a set of collision operators and let ν be a given
Borel probability measure on C. Let LN be defined in terms of these as in (36). Then
the semigroup PN,t = etLN propagates chaos for all t meaning that if {ρN}N∈N is
a ρ-chaotic sequence, then for each t, {PN,tρN}N∈N is a ρ(t)-chaotic sequence for
some ρ(t) = limN→∞(PN,tρN)

(1), where in particular this limit of the one-particle
marginal exists and is a density matrix.

As expected the marginal density matrix ρ(t) satisfies a Quantum Kac-Boltzmann
equation

d
dt

ρ(t) = 2(ρ(t)?ρ(t)−ρ(t))

where quite generally for operators in B(H)

A?B = Tr2 [dν(σ)U(σ)[A⊗B]U∗(σ)] = Tr2[Q(A⊗B)]

is the Quantum Wild Convolution.

5.3 Equilibrium states

An equilibrium density matrix for the evolution (36) is given by all those density
matrices ρN that satisfy

LN(ρN) = 0 .

Recall that the N-particle Hamiltonian is HN = ∑
N
j=1 h j where h j is the single parti-

cle Hamiltonian acting on the jth factor. List the eigenvalues of h as e1, . . . ,eK count-
ing their multiplicities and denote the corresponding eigenvectors by φ1, . . . ,φK . Us-
ing the multi-index notation α = (α1, . . . ,αN) where α j ∈ {1, . . . ,K}, j = 1, . . . ,N
the eigenvalues of HN are given by Eα = ∑

N
j=1 eα j and Ψα = φα1 ⊗·· ·⊗φαN are the

eigenvectors.
It is not very difficult to show that the set CN of equilibrium states forms a com-

mutative von Neumann algebra, and hence it is generated by the minimal projec-
tions. The algebra AN consisting of all operators of the form f (HN), where f is
a bounded continuous function, is a sub-algebra of CN and it is generated by the
spectral projections of the Hamiltonian HN . Define two multi-indices α,α ′ to be
adjacent if for some pair (i, j), eαi + eα j = eα ′i

+ eα ′j
and αk = α ′k,k 6= i, j. With this

notion of adjacency the multi-indices α form a graph, the adjacency graph GN . We
denote by γ1, . . . ,γn the connected components of GN . In [13] the following theorem
is proved.
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Theorem 8. The minimal projections of CN are in one to one correspondence with
the connected components of the adjacency graph GN and are given by

Pk = ∑
α∈γk

|Ψα〉〈Ψα | .

Ergodicity in our context is the notion that the only equilibrium states of the Quan-
tum Kac Model are given by the algebra AN . By the above theorem this is the case
if the connected components of the adjacency graph are determined by the ener-
gies of the Hamiltonian HN . The occupation number representation is useful in this
context. We write Eα = ∑

K
j=1 k j(α)e j where k j(α) denotes the number of times the

index j occurs in α . Thus, if the energies of h, {e1, . . . ,eK} are rationally indepen-
dent then any eigenvalue of HN is uniquely determined by the occupation numbers
k1(α), . . . ,kK(α) (see below). Hence, in this case we have that the minimal projec-
tions of CN are eigenprojections of HN and hence CN =AN .

Here is an example where CN 6=AN . Assume the single particle Hamiltonian has
the eigenvalues 1,2,4 with the corresponding eigenvectors ψ1,ψ2,ψ3. Then pick n1
to be even integers and set

n2 = N− 3
2

n1 , n3 =
1
2

n1 .

Then
n1 +2n2 +4n3 = 2N ,n1 +n2 +n3 = N .

The number e = 2N is an eigenvalue of the Hamiltonian HN and it is degenerate.
The eigenvectors are of the form ψα1 ⊗·· ·⊗ψαN where α j ∈ {1,2,3}. We set α =
(α1, . . . ,αN) and n1(α) the number of ψ1 factors, n2(α) the number of ψ2 factors
and n3(α) the number of ψ3 factors. If α and β are adjacent, then the condition
eαk + eα`

= eβk
+ eβ`

implies that either eαk = eβk
and eα`

= eβ`
or eαk = eβ`

and
eα`

= eβk
; anything else is not possible. Hence for any of the indices α and β to be

adjacent, we must have that n1(α) = n1(β ), n2(α) = n2(β ), n3(α) = n3(β ). Thus, if
these triples are different, but with the same N and e, the two states are not adjacent
and hence Ge,N , the adjacency graph for a fixed energy e is not a connected graph.
The number of elements in a connected component of Ge,N is given by

N!
n1!n2!n3!

where N = n1 +n2 +n3.
The Quantum Kac Master Equation (QKME), being a completely positive map

can be written in terms of Kraus operators (see [10]). The collision specifications
yield that the Kraus operators are self-adjoint and hence the QKME can be brought
into a Lindblad form ∂tρ = ∑k[Vk, [Vk,ρ]]. An example, closely related to Example
5.1, is the following Lindblad equation ∂tρ = LN(ρ), where



22 Federico Bonetto, Eric A. Carlen, Lukas Hauger, and Michael Loss

LN(ρ) =
1

N−1 ∑
[α,β ]∈EN

[Lα,β , [Lα,β ,ρ]] .

Here, EN is the edge set of the graph GN . With Fα,β = |Ψα〉〈Ψβ |, the ‘angular’ mo-
mentum operators Lα,β are given by

Lα,β = Fα,β −Fβ ,α .

Note that in Example 5.1 the operator given by the collision specifications is LN up
to a factor that commutes with the angular momenta Lα,β . The interesting point is
that the gap of the generator LN is given by the gap of the combinatorial or graph
Laplacian on GN . To describe this we shall assume that the eigenvalues of h are
rationally independent. The energies of the Hamiltonian HN are given by

E(α) =
K

∑
j=1

k j(α)e j

where the k j(α) are integers and ∑
K
j=1 k j(α) = N. Since the e j’s are rationally inde-

pendent, the eigenvalues of HN are in one to one correspondence with the ‘occupa-
tion numbers’ k(α) = (k1(α), . . . ,kK(α)). Next, note that k(α) = k(β ) if and only
if α and β are related by a finite sequence of pair transpositions. Thus, HΨα = EΨα

and HNΨβ = EΨβ if and only if α and β are adjacent in GN . In other words, there
is a one to one correspondence between the eigenspaces of HN and the connected
components of GN . This is precisely the case in Example 5.1. Indeed the energies of
HN are given by

E(α) = k1(α)×0+ k2(α)×1

and with k1(α)+k2(α) = N the occupation numbers determine E(α) uniquely. The
vertices of the graph GN are given by multi indices of length N consisting of 1s
and 0s and two indices are connected if one can be transformed into the other by a
series of transpositions. Thus, in this case multi indices are adjacent if and only if
they have the same number of 0s and hence 1s and clearly the occupation numbers
determine the connected components of GN uniquely. The subgraphs given by the
connected components are well known under the name Johnson Graphs or Johnson
Association Schemes. In particular the eigenvalues of the graph Laplacian of these
graphs are all known as are the eigenvectors [16]. The following theorem is a special
case of a result that will appear in [10].

Theorem 9. Assume that the eigenalues of h are rationally independent and N > 2.
Then the gap of LN is

2N
N−1

.

Much remains to be understood concerning the Quantum Kac Master Equation.
At present, little is known about sharp entropy production inequalities. Beyond this,
there are very interesting questions that have no classical analog – these questions
concern entanglement which Schrödinger singled out as the fundamental feature
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setting quantum mechanics apart from classical mechanics. The equilibrium states
of the Quantum Kac Master Equations studied here are separable; that is, free of en-
tanglement. The rate at which entanglement is “broken” along the flow is of physical
interest, and has been investigated in related models [20].

We hope this account of various aspects of the Kac model, classical and quantum,
inspires further progress in this favorite field of research of Maria Carvalho.
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Poincaré, 22(9):2975–2993, 2021.

4. F. Bonetto, M. Loss, H. Tossounian, and R. Vaidyanathan. Uniform approximation of a
Maxwellian thermostat by finite reservoirs. Comm. Math. Phys., 351(1):311–339, 2017.

5. Federico Bonetto, Alissa Geisinger, Michael Loss, and Tobias Ried. Entropy decay for the
Kac evolution. Comm. Math. Phys., 363(3):847–875, 2018.

6. Federico Bonetto, Michael Loss, and Ranjini Vaidyanathan. The Kac model coupled to a
thermostat. J. Stat. Phys., 156(4):647–667, 2014.

7. E. Carlen, M. C. Carvalho, and M. Loss. Many-body aspects of approach to equilibrium.
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