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(b) Equation (iii) can be solved by iteration,
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In each of Problems 21 through 28 draw a direction
field for the given differential equation. Based on the u(ty) = (1 — kA 'ug + To [1 — (1 — kAr)"].
direction field, determine the behavior of y as t — oc. If
this behavior depends on the initial value of y at ¢t = 0,
describe this dependency. Note that the right sides of
these equations depend on ¢ as well as y.

or, using the formula for the partial sum of a
geometric series,
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21 yy==2+4¢t—y
22. Yy =te ¥ =2y the solution to the initial value problem (i).

23. y'=e'+y 30. Verify that the function in Eq. (23) is a solution of
24, Y =t+2y Eq. (22).




