No books or notes allowed. No laptop or wireless devices allowed. Show all your work for full credit. Write clearly and legibly.

Name (print):

Question:	1	2	3	4	Total
Points:	30	40	15	15	100
Score:					

Question 1 .. 30 point
Let X be a normal random variable with $\mu=\mathbb{E}(X)=2$ and $\sigma^{2}=\operatorname{var}(X)=4$.
(a) (15 points) Compute $\mathbb{P}(X<0)$. Express the result in term of the probability integral Φ.

Solution: Standardizing we get:

$$
\mathbb{P}(X<0)=\mathbb{P}\left(\frac{X-2}{2}<-1\right)=\Phi(-1)
$$

(b) (15 points) Find δ such that

$$
\mathbb{P}(2-\delta<X<2+\delta)=0.95
$$

Express the result in term of the α critical value z_{α}.
Solution: In this case we obtain

$$
\mathbb{P}(2-\delta<X<2+\delta)=\mathbb{P}\left(-\frac{\delta}{2}<\frac{X-2}{2}<\frac{\delta}{2}\right)
$$

so that we need

$$
\Phi\left(-\frac{\delta}{2}\right)=0.025
$$

and

$$
\delta=2 z_{0.025}
$$

Question 2 . 40 point
Let X and Y be two r.v. such that the marginal p.d.f. of X is

$$
f_{X}(x)= \begin{cases}4 x e^{-2 x} & x>0 \\ 0 & x \leq 0\end{cases}
$$

and the conditional p.d.f. of Y given X is

$$
f_{Y \mid X}(y \mid x)= \begin{cases}\frac{1}{x} & 0<y<x \\ 0 & \text { otherwise }\end{cases}
$$

This means that, given $X=x, Y$ in uniform in $[0, x]$.
(a) (10 points) Write the joint p.d.f. $f(x, y)$ of X and Y.

Solution: Clearly we have

$$
f(x, y)= \begin{cases}4 e^{-2 x} & x>y>0 \\ 0 & \text { otherwise }\end{cases}
$$

(b) (15 points) Compute the marginal p.d.f. of $f_{Y}(y)$ of Y and the conditional p.d.f. $f_{X \mid Y}(x \mid y)$ of X given Y.

Solution:

We have

$$
f_{Y}(y)=\int_{y}^{\infty} 4 e^{-2 x} d x=2 e^{-2 y} \quad y>0
$$

so that

$$
f_{X \mid Y}(x \mid y)=\frac{4 e^{-2 x}}{2 e^{-2 y}}=2 e^{-2(x-y)} \quad x>y>0
$$

(c) (15 points) Compute $\mathbb{P}(Y>X / 2)$.(Hint: consider first $\mathbb{P}(Y>X / 2 \mid X=x)$.)

Solution: Observe that

$$
\mathbb{P}(Y>X / 2)=\int_{0}^{\infty} \mathbb{P}(Y>X / 2 \mid X=x) f_{X}(x) d x
$$

but

$$
\mathbb{P}(Y>X / 2 \mid X=x)=\frac{1}{2}
$$

since Y is uniform in $[0, x]$. Thus we have

$$
\mathbb{P}(Y>X / 2)=\frac{1}{2}
$$

Alternatively we have

$$
\begin{aligned}
\mathbb{P}(Y>X / 2)= & \iint_{0<y<x / 2} 4 e^{-2 x} d x d y=\int_{0}^{\infty} \int_{0}^{x / 2} 4 e^{-2 x} d y d x= \\
& \int_{0}^{\infty} 2 x e^{-2 x} d x=\frac{1}{2}
\end{aligned}
$$

Question 3 .
Let X and Y be two independent Normal Standard r.v., that is the joint p.d.f. of X and Y is

$$
f_{X, Y}(x, y)=\frac{1}{2 \pi} e^{-\frac{x^{2}+y^{2}}{2}} .
$$

Call

$$
\begin{aligned}
U & =X+Y \\
V & =X-Y .
\end{aligned}
$$

Compute the joint p.m.f. of U and V. Are they independent?

Solution: We first write X and Y in term of U and V has

$$
\begin{aligned}
X & =\frac{1}{2}(U+V) \\
y & =\frac{1}{2}(U-V) .
\end{aligned}
$$

Clearly we have

$$
\left|\operatorname{det}\left(\frac{\partial(x, y)}{\partial(u, v)}\right)\right|=\frac{1}{2}
$$

Since

$$
f_{X, Y}(x, y)=\frac{1}{2 \pi} e^{-\frac{x^{2}+y^{2}}{2}}
$$

we get

$$
f_{X, Y}(x, y)=\frac{1}{4 \pi} e^{-\frac{u^{2}+v^{2}}{4}}=\frac{1}{2 \sqrt{\pi}} e^{-\frac{u^{2}}{4}} \frac{1}{2 \sqrt{\pi}} e^{-\frac{v^{2}}{4}}
$$

and U and V are two independent Normal r.v. with expected value 0 and variance $\sqrt{2}$.

If X is a continuous r.v., the upper quintile $q(0.8)$ of the p.d.f. of X is defined by

$$
\mathbb{P}(X<q(0.8))=0.8
$$

A Pareto r.v. X with shape α is defined by the p.d.f.

$$
f(x)= \begin{cases}\alpha x^{-(\alpha+1)} & x \geq 1 \\ 0 & x<1\end{cases}
$$

where $\alpha>1$.
Compute $q(0.8)$ when X is a Pareto r.v. with shape α.

Solution: We have

$$
\mathbb{P}(X \leq x)=\int_{1}^{x} \frac{\alpha}{y^{\alpha+1}} d y=x^{-\alpha}-1
$$

so that

$$
q(0.8)=0.2^{-1 / \alpha}
$$

Useful Formulas

- Exponential Distribution: if T is an exponential r.v. with parameter λ then its density function is

$$
f(t)=\left\{\begin{array}{lc}
\lambda e^{-\lambda t} & \text { if } \\
0 & \text { otherwise }
\end{array} \quad t \geq 0\right.
$$

while $E(T)=1 / \lambda$ and $F(x)=P(X \leq x)=1-e^{-\lambda x}$.

- Normal distribution: if X is a Normal random variable with $\mathbb{E}(X)=\mu$ and $\operatorname{var}(X)=$ σ^{2} then

$$
f(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}} .
$$

Moreover $Z=(X-\mu) / \sigma$ is Standard Normal, that is Z is normal with $\mu=0$ and $\sigma^{2}=1$. The c.d.f. of Z is $\Phi(x)=\mathbb{P}(Z \leq z)$ and the α-critical value z_{α} is defined by $\Phi\left(-z_{\alpha}\right)=\alpha$.

- Uniform distribution: If X is a Uniform r.v. in $[A, B]$ then

$$
f(x)= \begin{cases}\frac{1}{B-A} & A<x<B \\ 0 & \text { otherwise }\end{cases}
$$

