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(mm), before breaking (x) and the cross—sectional area in
square millimeters (mm?) (y):

(5.28,52.36) (5.40,52.58) (4.65,51.07) (4.76,52.28) (5.55,53.02)
(5.73,52.10) (5.84,52.61) (4.97,52.21) (5.50,52.39) (6.24,53.77)

(a) Find the equation of the least'squares regression line.
(b) Plot the points and the line on the same graph.
(¢) Interpret your output.

6.5-10. The “golden ratio” is ¢ = (1 + +/5)/2. John Putz,
a mathematician who was interested in music, analyzed
Mozart’s sonata movements, which are divided into two
distinct sections, both of which are repeated in perfor-
mance (see References). The length of the “Exposition”
in measures is represented by a and the length of the
“Development and Recapitulation” is represented by b.
Putz’s conjecture was that Mozart divided his movements
close to the golden ratio. That is, Putz was interested in
studying whether a scatter plot of a + b against b not only
would be linear, but also would actually fall along the line
y = ¢x. Here are the data in tabular form, in which the
first column identifies the piece and movement by the
Kochel cataloging system:

(a) Make a scatter plot of the points a + b against the
points b. Is this plot linear?

(b) Find the equation of the least squares regression line.
Superimpose it on the scatter plot.

Koéchel a b a+b Kochel a b a+b
279; 1 38 62 100 279,11 28 46 74
279,111 56 102 158 280,1 56 88 144
280, I1 24 36 60 280, III 77 113 190
281,1 40 69 109 281,II 46 60 106
282, 1 15 18 33 282,II1 39 63 102
283, 1 53 67 120 283,II 14 23 37
283,111 102 171 273 284,1 51 76 127
309, I 58 97 155 3111 39 73 112
310,1 49 84 133 330,1 58 92 150
330,II1 68 103 171 332,1 93 136 229
332,II1 90 155 245 3331 63 102 165
333,11 31 50 81 457,1 74 93 167
533,1 102 137 239 533,11 46 76 122
545,1 28 45 73 547a,1 78 118 196
570, 1 79 130 209

(¢) On the scatter plot, superimpose the line y = ¢x.
Compare this line with the least squares regression
line (graphically if you wish).

(d) Find the sample mean of the points (a + b)/b. Is the
mean close to ¢?

6.6* ASYMPTOTIC DISTRIBUTIONS OF MAXIMUM LIKELIHOOD

ESTIMATORS

Let us consider a distribution of the continuous type with pdf f(x;6) such that the
parameter 6 is not involved in the support of the distribution. Moreover, we want
f(x;0) to possess a number of mathematical properties that we do not list here.
However, in particular, we want to be able to find the maximum likelihood estimator

6 by solving
d[ln L(9)] i
a9
where here we use a partial derivative sign because L(6) involves x1,%y,. .., Xy, too.
That is,
3[lnL(@)]
AL

where now, with 8 in this expression, L(9) = f(X1; 0)f(X2;0) - f(Xn; ). We can
approximate the left-hand member of this latter equation by a linear function found
from the first two terms of a Taylor’s series expanded about 6, namely,
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a[InL®)]  ~
= )

when L(0) = f(X1;0)f (X2:0) - - - f(Xn; 6).
Obviously, this approximation is good enough only if 6 is close to 6, and an
adequate mathematical proof involves those conditions, which we have not given
- here. (See Hogg, McKean, and Craig, 2013.) But a heuristic argument can be made
by solving for 6 — 6 to obtain

8%[In L(9)]
e ok WD 0,
362

3[In L(9)]
= 36
-0 = ——"7——. 6.6-1
32[In L(6)] Gy
362
Recall that
InL(0) = Inf(X1;0) + Inf(X2;0) + - - - +Inf(X,;0)
and
dInL(®) ~ d[lnf(X;0)]
g s D oS by )

i=1

which is the numerator in Equation 6.6-1. However, Equation 6.6-2 gives the sum of
the n independent and identically distributed random variables

d[In f(X;;0)]

Yi= :
200

=h|KDPIL 14,

and thus, by the central limit theorem, has an approximate normal distribution with
mean (in the continuous case) equal to

/O" 3[1nf(x;0)]f(x,9)dx L /‘x’ o[f(x;0)] f(x;0)

00 ’ w30 f(x 9)

[ W,
151 5200
a oo

=g [ _oof(x;O) dx}
a

= —[1]

= 0.

Clearly, we need a certain mathematical condition that makes it permissible to inter-
change the operations of integration and differentiation in those last steps. Of course,
the integral of f(x;0) is equal to 1 because it is a pdf.

Since we now know that the mean of each Y is

/ > 3[Inf(x;6)]
00

f(x;0)dx =0, ‘

let us take derivatives of each member of this equation with respect to 6, obtaining

ﬁ[ﬁmmmmgw[wmmwmm

dx =0,
Y, 30 &0
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However,

f(x;0)] _ 8[lnf(x;0)] .,
00— ag  J®O)

SO

o0 . 2 o 92 .
f_ml%(;e)]] f(x;@)dx:—/_c>o &lna]yf(x;@)dx-

Since E(Y) = 0, this last expression provides the variance of ¥ = 3[Inf(X;6)]/06.
Then the variance of the sum in Equation 6.6-2 is n times this value, namely,

962
Let us rewrite Equation 6.6-1 as
( 3[ln L(9)]/36 )
JA(B—0) J-nE@[inf(X;60)]/062)

( v ) - 1oL ()] B el

n__ 962
\/ —E{8*[Inf(X;6)]/36%) E{(—02[Inf(X;0)]/862)}

Since it is the sum of # independent random variables (see Equation 6.6-2),
d[Inf(X;;0)]/06, i=12,...,n,

the numerator of the right-hand member of Equation 6.6-3 has an approximate

N(0,1) distribution, and the aforementioned unstated mathematical conditions

require, in some sense, that
1 8%[In L(9)]

g converge to E(—3*[Inf(X;0)]/362}.

Accordingly, the ratios given in Equation 6.6-3 must be approximately N(0, 1). That
is, 6 has an approximate normal distribution with mean 6 and standard deviation

|
V—nE(@2[Inf(X;0)]/262}

(Continuation of Example 6.4-1.) With the underlying exponential pdf
1
f(x;@)zge_x/g, 0 <x< oo, 0e={0:0<0 < o0},

X is the maximum likelihood estimator. Since
Inf(x;6) = —In6 — g

and

nf(x;0)] 1 x Plnf(x0)] 1 2%
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we have
1 2X7 1 26 il
o i

because E(X) = 6. That is, X has an’ approximate normal distribution with mean
6 and standard deviation §/+/n. Thus, the random interval X & 1.96(6//n) has an
approximate probability of 0.95 that it covers 6. Substituting the observed X for 0, as
well as for X, we say that X + 1.96%/4/n is an approximate 95% confidence interval
for 6. il

While the development of the preceding result used a continuous-type distri-
bution, the result holds for the discrete type also, as long as the support does not
involve the parameter. This is illustrated in the next example.

(Continuation of Exercise 6.4-3.) If the random sample arises from a Poisson
distribution with pmf

AeH

x!

flx ) = ; 0=\0,1, 2.0, 45 AreQ={1:0< A < o0},

then the maximum likelihood estimator for A is 2 = X. Now,
Inf(x;A) =xlnA — A —Inx!.
Also,

a[lnf(x; 1)) ¥4 .y 9*[Inf(x; )] )

EW A 912 22

Lt ffaki\oe orhiL
A Ao )
and % = X has an approximate normal distribution with mean A and standard devia-
tion /A /n. Finally, X+1.645,/X/n serves as an approximate 90% confidence interval

for L. With the data in Exercise 6.4-3, ¥ = 2.225, and it follows that this interval
ranges from 1.837 to 2.613. ]

Thus,

It is interesting that there is another theorem which is somewhat related to the
preceding result in that the variance of 9 serves as a lower bound for the variance
of every unbiased estimator of 6. Thus, we know that if a certain unbiased esti-
mator has a variance equal to that lower bound, we cannot find a better one, and
hence that estimator is the best in the sense of being the minimum-variance unbi-
ased estimator. So, in the limit, the maximum likelihood estimator is this type of best
estimator.

We describe this Rao-Cramér inequality here without proof. Let X1, X2, ...,

~ X, be a random sample from a distribution of the continuous type with pdf f(x;8),

9 € Q={0:c <6 < d}, where the support of X does not depend upon 6, so that
we can differentiate, with respect to 8, under integral signs like that in the following
integral:

/_Zf(x;@) dxX—="1¢
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IfY = u(X1,X>,...,X,) is an unbiased estimator of 6, then

1
V) 2 e B T 0) 0T 8) &

]
n (7 [02Inf(x;60)/802] f(x;6)dx

Note that the integrals in the denominators are, respectively, the expectations

E”alnf(x;e)r}‘ o E[zﬂlnf(x;e)]_
30 962 i

sometimes one is easier to compute than the other. Note also that although the Rao—
Cramér lower bound has been stated only for a continuous-type distribution, it is
also true for a discrete-type distribution, with summations replacing integrals.

We have computed this lower bound for each of two distributions: exponential
with mean 6 and Poisson with mean 1. Those respective lower bounds were 62/n and
A/n. (See Examples 6.6-1 and 6.6-2.) Since, in each case, the variance of X equals the
lower bound, then X is the minimum-variance unbiased estimator.

Let us consider another example.

(Continuation of Exercise 6.4-7.) Let the pdf of X be given by
f(x;0) = 0x771, 0<x<1, 0eQ=1{0:0<0 < o0}
We then have

. Inf(x;6) =In6 + (0 — 1) Inx,

dlnf(x;0) 1
A NG A SRS e
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and

821nf(x;9)_ 1 I
362550 & #%:0% !

Since E(—1/6%) = —1/62, the greatest lower bound of the variance of every
unblased estimator of 6 is #2/n. Moreover, the maximum likelihood estimator
6 = —n/ In[TL 1X has an approximate normal distribution with mean 6 and vari-
ance 62/n. Thus, in a limiting sense, 6 is the minimum variance unbiased estimator
of 6. o=

To measure the value of estimators, their variances are compared with the Rao—
Cramér lower bound. The ratio of the Rao—Cramér lower bound to the actual
variance of any unbiased estimator is called the efficiency of that estimator. An esti-
mator with an efficiency of, say, 50%, means that 1/0.5 = 2 times as many sample
observations are needed to do as well in estimation as can be done with the minimum
variance unbiased estimator (the 100% efficient estimator).




