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We describe an exchange market consisting of many agents with stochastic pref-
erences for two goods. When individuals are indifferent between goods, statistical
mechanics predicts that goods and wealth will have steady-state gamma distributions.
Simulation studies show that gamma distributions arise for a broader class of pref-
erence distributions. We demonstrate this mathematically in the limit of large
numbers of individual agents. These studies illustrate the potential power of a statis-
tical mechanical approach to stochastic models in economics and suggest that gamma
distributions will describe steady-state wealths for a class of stochastic models with
periodic redistribution of conserved quantities. Journal of Economic Literature Clas-
sification Numbers: C15, C62, C73, D3, D5.  © 2002 Elsevier Science (USA)
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1. INTRODUCTION

Academic models of financial markets since the beginning of the 20th
century have noted the essentially random nature of successive changes in
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asset prices. Yet classical economic theory describes deterministic transi-
tions of the detailed states of an economic system which balance supply
and demand in response to changes in preference and in information (e.g.,
in expectations of future returns). This dichotomy between (largely)
deterministic detailed transitions and stochastic observed aggregates in
economics [ 1, 2] is analogous to that in physics between motions of New-
tonian particles and macro- level observations of Brownian motion and
thermodynamic variables [3-5]. In both economics and physics, the limit-
ing behavior for superposed effects of large numbers of individuals
(particles) is due to probabilistic central limit theorems. The first such
theoretical results asserted Gaussian-distributed displacements [ 1-4]. More
realistic models in physics, going beyond Gaussian observations, have
incorporated interactions among particles [5]. In economics, statistical
description of aggregates based on probabilistic limit theorems has been
broadened to include infinite-variance laws and stable-increments processes
[6-8]. Economic models leading to non-Gaussian distributions often
involve complex or heterogeneous interactions among market participants
[9-11], but results with true statistical-mechanics flavor, deriving such
behavior from detailed microeconomic-level mechanisms, are rare.

One ecarly attempt to incorporate thermodynamic and statistical
mechanical reasoning in economics [12] was largely confined to analogy
without detailed mathematical content. Another approach [13], which we
largely follow, formulates the problem of economic market equilibrium as
that of finding a time-invariant, nondegenerate probability distribution in a
high-dimensional state space describing the fortunes of a large population
of firms and individuals. The authors of [13] proposc that micro-
economic production decisions be treated deterministically while market
fluctuations based on changing preferences and exogenous influences be
considered a stochastic process. Reference [2] provides one of the few

cases of analysis with_simplifying large-population approximations leading
mm;s of a large state-space Markov model in eco-
_nomics-There are several references, and a growing physics literature, with
statistical mechanics flavor in economic modeling, which describe equilibria
via maximum “entropy” configurations subject to constraints such as fixed
total wealth [ 14-16].

In this paper, we adopt a combined theoretical and simulation approach
to a simple model in which a fixed supply of goods is traded among indi-
viduals whose preferences for goods are determined stochastically. A
central feature of our model is that individuals periodically change their

preferences for s_independently, according to a_distribution of pref-
w The changes in aggregate demand translate
in the next time-period into changes in the market-clearing price. As

mdividuals adjust the mix of assets they hold to satisfy their changing
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preferences, the value of their goods waxes and wanes according to how
well, by chance, they anticipate future demand.

Using four separate lines of argument, of increasing generality, we show
that the model results in a probabilistic steady state, independent of initial
conditions, with gamma distributions of goods and wealths. The first is a
simulation study, which confirmed the steady-state behavior of the model
under various assumed preference distributions and showed that wealths
and amounts of goods behaved like gamma random variables with param-
eters depending only on the preference distribution. The second line of
argument follows the heuristic of [14] from statistical physics in calculat-
ing maximum “entropy” configurations subject to the constraint of fixed
total wealth. This argument is applicable only when individuals are indif-
ferent between goods, in which case we, like [14], treat all microstates as
equiprobable because all microstates accessible from cach wealth-configu-
ration aré. The third line of argument is a simple consequence of a theorem
of [17]: gamma-distributed wealths are implied by the assumption that in
steady state, wealths are jointly independent with ratios independent of
their sums. Our final argument, a mathematical development along the
lines of the approach to statistical mechanics in [4], shows how the gamma
distribution for wealths follows necessarily from the assumption that the
individual wealths have steady-state distributions characteristic of a set of
independent identically distributed variables conditionally given their sum.
The generality of our result that wealths have steady-state gamma distribu-
tions, across our family of models, suggests that it may be applicable to a
variety of stochastic models in which conserved quantities are periodically
re-balanced.

2. THE MODEL

For simplicity, we begin by considering a market consisting of N indi-
viduals and two goods, A and B, the total number of units of each being
conserved respectively at aV and SN. At the start, we assign to individuals
(indexed by §) certain amounts a, of good A and by of good B. At all
integer times ¢z, individuals hold amounts of good A and B respectively
denoted a;, and b,, and measure their total wealths in terms of an external
numeraire, such as gold or inflation-adjusted specie, the total quantity of
which is conserved, at wN. We use such a“gold standard” in order to
maintain symmetry in the treatment of goods A and B, and with a view to
allowing many more goods in further developments of the model. A
somewhat simpler and less artificial approach, which we also follow in
defining notations, is to view units of A as numéraire; with 9, denoting the
time-dependent value of one unit of good B in units of good A at time ¢.
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Initially, the holdings a,, b,, are assigned; thereafter, at each time-period
t = 1, individuals determine fractions of their wealths

W, =a;, +‘91bi,z—1 (1)

to allocate to good A, with the remainder allocated to good B. This is
equivalent to maximizing over a;, € [0, w, ,_, ] an individual Cobb-Douglas
[ 18] utility function of the form

Uda,) = (air)fﬂ (W _ait)l_fﬂ: 2)

where f;, is a doubly indexed sequence of independent and identically dis-
tributed random variables with values in the interval [0, 1]. The maxi-

£-1 mization of (2) results in the assignment
”Q'TL (w E} 4’- --------- : . o |
rod @R (me) ﬁ%ﬁ Juw ;ba"‘} (3)
it

Lo P ) f\{?) (-):0 (I=fi)w, =9,

fa (wa)" + o (w-a
The so-far-undetermined price 9, is uniquely determined from variables at
;\Z}e t— jether with {f,,} via the market-clearing constraint

(w- &\] o N ,
4 Z a, =aN, Y. b,=pBN. @
(w c\) ~ & ;_g i=1 i=1

This constraint immediately yields
N N
Z Wi =N, Z (I=fi)w, = StﬁN 3)
i=1 i=1

from which there follows, upon substituting (1) for w;, and solving for 3,,

N N
8,=2 (-1 ai,t—l/z Siubi i1 (6)
i=1 i1
Substituting this expression for 9, back into (3) leads to the expression

a4, = .f;'tai,t—l +fixbi,r—1 Zj (1 _‘fjt) a; t—l/Zj fjtbj,x—l } 0
b,=(1 _fz'z)[bi, t—1 T & 11 Zj. fj:bj,zgl/z:j (1 _f:n‘) aj,r—i]-

Thus, individuals’ holdings of goods (7), wealth (1), and prices (6) at time ¢
can be expressed in terms of their previous holdings (a; , ;, b;,_,) and the
N random variables {f,}, making this a Markov process discrete in time
with 2N continuous state-variables a, and b, (which satisfy two linear
constraints, making 2N —2 the effective state dimension). -




EQUILIBRIUM WEALTH DISTRIBUTIONS 421

The equations deterrﬁining new state from old have the alternative
expression (6) together with

(5)=(a e )(s) () ®

or, after premultiplying the last equation by the row-vector (1,9,.)),
_ '9t+1
Wits1 = f;z+T(1_f;t) Wi (9)
t

If values are expressed in units of a “money”’ numéraire of which there is
a total quantity wN, the aggregate relations (5) imply that the total of
(a+f3,) N units of numéraire A at time ¢ has value N, so that 1 unit of
A has monetary value @/(a+ 89,) at time ¢, and all prices in units of A are
converted to money prices through multiplication by the factor
w/(x+p8,). The wealth w, of agent i at time ¢ in terms of units of A is
then equivalent to the “money wealth:”

m, =w,o/(a+ f9,).

The simulation results in the next section are presented in terms of
money-wealths. As will be seen in Section 6 below, when N is large the
ratio o/(«+ f£9,) is distributionally indistinguishable from the constant 1,
and thereore m,, and w,, have asymptotically the same distribution.

3. SIMULATION RESULTS

We began by examining, in computer simulations with two assets (A and
B) and N = 1000 individuals, whether our model with uniform preference
distribution leads to a steady state and a recognizable limiting distribution
for individual wealths. In our simulations, the assets were initially either
equally divided (@, = b, = 1/ for all i) or alternatively 99.9 % of A and B
were initially in the hands of one individual with the remaining assets
equally divided. We characterized the distribution of goods and wealth
every 50 cycles by evaluating their first five moments, i.e. the average over
individuals of of, b, and money-wealths m*, for k=1 to 5. After about
10-N (i.e., 10,000) cycles, the moments appeared to have reached steady-
state values that were independent of the initial conditions: This steady
- state is summarized in Table I, which gives average moments and standard
deviations, where. averages were taken over 200 cycles (every 50th cycle
from cycle 15,050 to 25,000): Since the moments were essentially identical for
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TABLE 1

Measured and Predicted Values of Weighted kth Moments and v, for Steady-State Goods and
Money Wealth Distributions Ansing from Uniform Preferences

Weighted £th moment v, computed from moments
k Theory Simulation Theory Simulation
Mean St. dev. Mean St. dev.
Goods
1st 1 1.00
2nd . 2 1.97 0.06
3rd 6 5.79 0.54 | 1.06 0.14
4rd 24 26.6 4.9 1 1.14 0.27
5th 120 111 48 1 1.31 0.41
' Wealths
1st 1 1.00
2nd 15 1.48 0.03
3rd 3 2.90 0.17 2 2.09 0.24
4rd 7.5 7.14 0.9 2 2.14 041
5th 22.5 21.1 5.0 2 2.30 0.63

Note. Theoretical values in columns 2 and 5 are v™*I'(v+k)/I'(v) and v for the gamma dis-
tribution (v=y=1) for goods and (v =y =2) for wealths. Simulation results are mean and
standard deviation for weighted moments in columns 3 and 4, and v, (see text for -definition)
in columns 6 and 7, calculated over every 50th cycle of the data from 15,050 to 25,000.

the @, and b, distributions, as expected by symmetry, only one set of
moments is listed (goods distribution). The moments scaled as a* for
goods and w~* for wealths; to eliminate these scaling factors, Table I gives
weighted moments, equivalent to choosing « =@ =1. The Gamma(v, y)
probability density, with shape-parameter v, scale parameter p, and mean
v/y, is defined as p(x) = (y*/I'(v)) x"' exp(—xy) for x > 0, and we found
that the moments of the empirical goods distribution were in excellent
agreement with those of Gamma(l, 1/a), while the empirical moments of
(monetary) wealths agreed closely with those of Gamma(2, 2/w) (Table I,
column 3).

We also performed simulations using nonuniform preference distribu-
tions. In this case, the simulation results suggested that the steady-state
goods and wealth distributions were still closely approximated by gamma
distributions, although the parameter v was no longer an integer. We per-
formed simulations with two types of preference distributions: truncated
Gaussians, and polynomial densities of the form p( f') oc (min( f, 1 — f))°
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for 0< f <1, wherec=1,2,3,4,5 —1/2, ~2/3, —3/4, and —4/5. The
Gamma(y, v/w) distribution with mean w and shape parameter v has as
kth moment {m*) =(v/w)™* I'(v+k)/I'(v). It follows that the weighted
ratio of moments (1/w)<{m*>/{m*~') increases by 1/v when k increases by
1. In the simulations, the values of v, calculated from the weighted ratios of
moments were fairly constant for successive values of & (Table I, column 6,
and Table II), which suggests that the distributions are close to Gamma.

TABLE I

Estimates of v,, Calculated from Differences in Successive Moment Ratios

Preference dist'n Goods dist’n Wealth dist’n

Mean St. dev. Mean St. dev.

Gaussian, ¢ = 0.125

v 8.03 0.69 174 2.34
vy 8.13 0.85 16.7 1.77
Vs 8.05 1.08 16.8 1.79
P(f)=12f10< £<0.5
" 4.56 0.41 9.03 0.76
v, 4.49 0.66 8.90 1.00
vy 4.45 0.95 8.53 113
p(fr=41f,0< <05
\Z 2.50 0.26 4.82 0.32
Vs 2.51 0.46 4.67 0.64
vy 2.63 0.68 4.60 1.06
Gaussian, o = 0.25
12 2.14 0.23 4.30 0.29
Va 2.17 0.38 4.41 0.47
V3 2.31 0.57 4.62 0.67
: Gaussian, g =0.5
vy 1.28 0.16 2.50 0.19
Va 1.36 0.27 2.56 - 0.35
v, 1.56 0.42 2.72 0.59
p(f)=1//8f,0<f<05
¥ 0.45 0.09 0.88 0.12
v, 053 0.16 0.98 0.22
¥y 0.69 0.25 1.17 0.35
p(f)=(108f)7",0< <05
¥ 0.31 0.07 (.58 0.10
¥, 0.38 0.13 0.67 0.19
v, - 0.52 0.19 0.86 0.31

Note. “Gaussian” with indicated standard deviation ¢ is truncated, i.e., conditioned to lie in
[0, 1]. The power-law densities were all taken symmetric about 0.5.
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FIG. 1. Comparison of theoretical and simulated wealth distributions for some of the
preference distributions shown in Tables I and II. Values of v were taken from the simulation
results as in Table I1.

Figure 1 shows graphically, in the form of slightly smoothed histograms
plotted in Excel overlaid with gamma densities with mean w and shape
factors v taken from Tables I and II, that the steady-state wealth distribu-
tions from the simulation data were very close to gamma. While the simu-
lation results are suggestive, they do not prove that the wealths asymptoti-
cally follow gamma distributions. Hence, we sought theoretical arguments.

- 4. HEURISTIC ARGUMENT COUNTING MICROSTATES

The nonlinearity of Eq. (7) makes the exact analysis of this system
intractable. However, for the particular case of a uniform preference dis-
tribution for f;, for all i and z, with density A(f) =1 for 0 < f <1, the
asymptotic behavior of the system for large N and ¢ can be roughly under-
stood by arguing as in [ 14]. In the following heuristic argument, there is a
close analogy between the distribution of wealth in the economic system
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and the distribution of energy among molecules of an ideal gas in statistical
mechanics. In the latter case all “microstates™ (specifications of the energy
of each molecule) with the same total energy are deemed equally likely.
One considers the number of ways 2 in which one can have N; molecules
with energy E,, subject to the constraints that the total energy and number
of molecules are fixed. The constraints are handled via Lagrange mul-
tipliers and the distribution of energy is determined by maximizing the
function

G(N,, E)) =log Q— 4, (Z 1\5,.—1\1)--/12 (Z NjEj—E)
i N

with respect to the N, (see [19]). In the case of the economics model with
uniform preferences, all ways of dividing an individual’s wealth between
goods A and B are equally likely. If wealth is measured in discrete units
(e.g., dollars), the number of ways of allocating money-wealth m, between
two goods is proportional to m; + 1 (zero dollars to good A, or one, or two,
... up to m; dollars). Hence, the number of ways one can have N, individ-
uals with wealth m,, N, individuals with wealth my, etc., is Q(N;, m;) =
- NUIi((m;+1)"/N,!). The factorials account for the fact that different
combinations of individuals in a set of wealth bins represent different
microstates. There are N! permutations of individuals, but this overcounts
the number of microstates because permutations of individuals within a
- wealth bin do not represent different microstates; the N/l terms in the
denominator correct for this overcounting. The N; can be made indepen-
dent variables by the introduction of Lagrange multipliers 1, and A, corre-
sponding to the constraints that the number of individuals and the total
wealth are constant. Maximizing the function G(N;,; m;) = log Q(N;, m;) —
4L (X; N;—N)—4,(3; Nym;— Nw) with respect to the N,, and then solving
for 4, and A, from the constraint equations, leads, in the limit as N, > w
and sums are replaced by integrals, to the Gamma(2,2/w) density
p(m) = (2/w)> m-exp(—2m/w) for wealths. For the case of v goods instead
of two goods, this generalizes to Gamma(y, v/w). The derivation of the
distribution of goods (g, or b,) among individuals follows the same argu-
ment except that the term analogous to (m;+1)" is omitted because there _
is no degeneracy in the way the goods can be allocated; this leads to
Q(N;, m;) = N\/II;N,! and to a Gamma(l, 1/«) density p(m).

5. AQUALITATIVE ARGUMENT

In this section, we apply a purely probabilistic result to our model, under
an appealing qualitative assumption, to derive the gamma distribution for
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steady-state wealths ;. The assumption is that arbitrary subsets of finitely
many wealth-variables at a time behave as though a steady—state distribu-
tion exists (for large ¢), and that

(a) the wealth-variables in the subset are asymptoticaily independent
(for large numbers N of agents and large time-index f), i.e., the total-
wealth asymptotically for large N imposes no constraint upon them, and

(b) the random mechanism of wealth-partition asymptotically makes
the total wealth in a sub-population of individuals {i,, i,, ..., i, } approxi-
mately independent of the way in which that wealth is subdivided among
the individuals in that sub-population.

Then the conclusion is that no distribution for the wealth-variables except
gamma is possible. .

In many economic contexts, agents form coalitions or groupings. Here,
groups of finitely many agents are artificial, since the underlying model
contains no mechanism for cooperation in the setting of preferences.
(However, such a mechanism would be interesting to include in later
refinements of the model.) The assumption (a)-(b) above says that the
aggregate wealth for a finite grouping of agents fluctuates statistically (in
steady state) in a way which is statistically unrelated to the fluctuating par-
tition of the grouping’s wealth among its individual members.

The underlying probabilistic result is the following theorem of [17]:

TaeoreM 1. If X, Y are independent positive random variables such that
X/(X+Y) and X +Y are independent, then X, Y are respectively distributed
as Gamma(v,, y), Gamma(v,, y) for positive constants v,, v,, y.

This theorem of Lukacs [17] was cited for economic relevance in a
rather different context by Farjoun and Machover [13, pp. 63-72]. They
were interested in the random variables profit-rate R and labor cost rate Z
per unit of capital per unit time in an economy, obtained by aggregating
over all firms. They adduced Theorem 1 to conclude that these variables
are approximately Gamma distributed because they found it qualitatively
and empirically plausible (after some discussion) that the ratio R/Z of the
gross “return to capital” R over “return to labor” Z should fluctuate
approximately independently of R+Z (the total return excluding rent).
Farjoun and Machover recognized that to apply Lukacs’s Theorem in this
setting, R and Z would have to be approximately independent, but they did
not attempt to justify this independence.

The formal result which we derive from Theorem 1 is as follows.

THEOREM 2. Suppose that the array of wealth variables w, (implicitly
also indexed by the number of agents N in our model) is such that for large
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N, t the joint distribution of each finite nonrandom set {i,, ..., ir} of the
random variables (W, ,, W, ,, .., W, ) converges (in the usual sense of
pointwise convergence of the joint distribution functions to a proper joint dis-
tribution function at continuity points of the latter), and that under the limit-
ing distribution of (W, ...,W,), the variables W, are positive and jointly

independent, and

W, W, W,
Sc=Wi+---+W, is independent of (——1 2 —ki)

Sk:S_ks---: Sk

Then all of the limiting W, variables are gamma distributed with the same
scale parameter y > 0.

Proof. For each fixed j=1,...k, X =W, and Y=3F_| W,—W, are
independent random variables such that X/(X+7Y) is independent of
X +Y. Thus Theorem 1 implies that W, and 3°F_, W, —W, are gamma dis-
tributed with the same scale parameter y > 0. Since it is well known that the
sum of independent gamma variables with common scale parameter is
gamma with the same scale, 3¥_, W, is gamma with scale parameter 7,
which is therefore the same for all j, and our proof is complete. |

The limitation of this approach is that the appealing assumption of
independence of sums and ratios of wealths of subsets is not readily dedu-
cible from our model.

6. PROBABILISTIC THEORY

For discrete-time Markov processes with continuous state-spaces, such
as the 2N —2 dimensional process defined in (4) and (7) above, there is a
fully developed but not very well-known theory of long-run asymptotics in
terms of equilibrium or stationary distributions, for which see the book
[20]. Under various sets of conditions, which are not casy to apply in the
present context of the process defined by Eq. (7), such continuous-state
processes can be shown to possess a unique stationary distribution which
can be found by solving a high-dimensional integral equation. The
challenge for application of this structure to economic theory is to obtain
simple approximate conclusions for observables such as the distributions or
moments of the wealth-variables w, or m,,.

The mathematical argument of this section proceeds in threc main steps.
Because of space limitations, we describe the main steps but omit some
mathematical details. We assume throughout that for large N and ¢

1 & -
v 2 wall=f) > k=0,1,2 (A.1)
i=1 .




428 SILVER, SLUD, AND TAKAMOTO

with probability 1, where the constant limits x4, , do not depend upon N or
t (but definitely do depend on k and the distribution of f},). Denote

=thy= lim N~ Z Wi, o® = Var(f,).

N,t— o0

A further technical assumption required throughout is that the density
A(f)=p;(f) has finite third moment and has Fourier transform abso-
lutely integrable on the real line.

First we apply a refinement of Central Limit Theory (the Edgeworth
expansion [21], pp. 533ff, as generalized for non-iid summands in [227]) to

establish the form of the conditional density of normalized price deviations
X, = \/JTI (9,1 —9) up to terms of order N~V where

I=a(l-w)/(Br),  p=E(f)

Second, we apply related limit theory along with an auxiliary assumption
(A.2 below) to provide, again up to terms of order N~/2 the joint density
of (X,, wy,, f1,). Third, we show that gamma is the only possible form for
asymptotic marginal distributions for w,, which is time-stationary within
the model (7), that is, for which the marginal distribution of Wy .41 Within
(X415 Wy 141> f1.041) is the same up to order l/ﬁ as that of w,,.

For the precise formulation of the first step, consider N large, and cal-
culate from equations (6), (5), and (3), that

| ‘9r+1 _ Zj (l_ﬂ(fj,u-i ) szwjz
3 2 (S —ﬂ+ﬂ)(1 — fi) Wy

3
=§:{l ocN(l Z(fgu—l J“)fjt J‘}

~0=f)w}

X{ ﬁNS

Now, applying Theorem 19.3 of [22] to the nonidentically distributed but
conditionally independent summands, given {f,,w ],} j—1, yiclds the
conclusion that the conditional density (at y) of X,,, given (X,, {w;, f;})
(at X, = x) 1s, asymptotically for large N,

Bu (yﬂﬁ )( 3(y)) (ﬁ ) e
o ﬂ2¢ a\/;z 1+ﬂ cxp \/ﬁqz(y) +o(N7Y3,  (10)
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where ¢ is the standard normal density, ¢, is a cubic polynomial, ¢, is a
quadratic, and o(N ") denotes terms of order less than N~'/2. In particu-
lar -

2
X,=/N@©$-9HE /V(O, ‘%’%) | a1
B
Thus, the central limit theorem implies that for large N, prices will be
normally distributed, and further shows how the variance of prices depends
on the mean and variance of preferences and the variance of wealths. In
conformity with the assertion (11) of asymptotic normality, we remark that
when histograms were made from 9, variables simulated (with N > 100,
and f;, ~ Uniform[0, 1]) from the model under study, these histograms
looked approximately normal, but the histograms of the variables log 9,
looked still more symmetric and therefore closer to normality. Further-
more, as expected, in the limit as N — co, the prices become fixed. Since
price fluctuations drive the redistribution of wealth, it may seem puzzling
that the initial wealth distribution is significantly altered for very large N.
The explanation is that the number of time-steps required to reach the new
steady state increases with N, and is of the order of N according to the
simulation results.
The next step relies on an auxiliary assumption restricting the form of
the conditional density of (w,,, f},) given X, (or equivalently, given 9,),
namely:

(A.2) The variables w, have a “nonlattice distribution [22, condition
(19.29)] with third moments bounded uniformly in N, ¢; and asymptoti-
cally for large N, ¢, conditionally given $,, the 2-vectors (w;,, w;, f,,)’ behave
as N independent identically distributed random vectors subject to

N1 é"zl (ww )= (a+aﬁ9z>_ (12)

This assumption can be compared with, but is quite different in spirit from,
the independence hypothesis of Theorem 2. In our model, the conditions
(12) impose a specific dependence on the wealths w,. However, as the
number N of agents gets large, nonrandom finite subsets of them may have
wealths which are hardly affected by the constraints (12) and may therefore
be approximately independent, as assumed in Theorem 2. The alternative
approach of (A.2) is to argue that the variables w, may still behave inde-
pendently conditionally given the sum-constraints. This latter approach is
motivated as in classical statistical mechanics (cf. [4]), where the exact
equilibrium distribution of particle positions and momenta is intractable
but the individual phase-space coordinates behave like independent
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random variables conditionally given a sum-condition fixing energy and
possibly some macroscopic integrals of the motion of a dynamical system.

By use of the same non-iid Edgeworth-expansion result of [22] cited
above, Assumptions (A.2) plus (A.1) lead to the following technical
conclusion: For a family of positive differentiable functions g, on [0, o)
such that the integrals I w?gy (W) dw are uniformly bounded, and for some
functions ¢, ¢,, ¢; which may depend upon x,

P 1t (W [ 2) = h(f ) gn(W) (1 +Clw+cz%_‘u)+ca )+0(N_1/2)’

(13)
where the final o term is understood as a function ry( f, w, x) such that for

each x, as N gets large, N'/2 [ {5 w® [ry(f, w, x)| dw df — 0.
In fact, the derivation of (13) from (A.2) shows that

T
1 o_ga 2 0'2[-52 »

C3 = — 6y, (14)

where we define for convenience

H1=05/#, O%Eﬂz_#%-

Formula (13) turns out to be precisely what is needed for the third step
of our derivation of gamma-distributed wealths. It is much less stringent
than (A.2) in restricting only the joint behavior of (w,,, f},, X,). It can be
understood as a first-order Taylor-series correction for large N to the con-
ditional independence of w,, and f;, given X, and (12). That the variables
w, f appear in this correction only through terms proportional to w, wf is
plausible because (12) is the model’s restriction on independence of w,,, f,;.
It can further be derived from (13) by use of (A.1), (5) and symmetric
permutability of the agents within the model (7), that ¢, ¢,, ¢; in (13) are
necessarily linear in x and have the form (14). Thus, (13) can replace A.2 as
the fundamental assumption describing the way in which wealths behave
independently (to order N ~'/%) despite having a fixed sum.

Our third step is to derive and solve the stationary equation expressing
the requirement that the joint density of (w, ,,,, X,,,) be the same up to

terms of order 1 /\/JV as the joint density of (wy, X). By (10), (11), and
(13), letting py (x) and py  (y) respectively denote the approximately
normal densities of X, and X,,,, we find that the joint density of
(X, Wiis f1s X1 441) 18, up to terms of smaller order than N1/,

2 (5) 5509 K1) ) e { j% |- |}
1s)
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where ¢,(y) is quadratic as in (10). However, as a function of
(X, Wis firs X, 11), by definition of X, and X, together with (9),

84X, //N ) )
Lee1 =1 1 —1 —Ji: Iz 16
o= (e (o) a0

Our task is to compare, up to terms of order 1/ \/]V , the joint distribu-
tion of (w),, X,) obtained from (15) with that for (W), 141, X,41) Obtained
from (13) and (14), which at (w*, y) is

8 () By, () ( i +@§’%)+ow-m>.

o,

We do this by calculating E(y(w, ,,,, X,,,) in two ways, with respect to
the two density forms just given, and equating them, where Y(w, y) is an
arbitrary smooth and compactly supported function. With (16) substituted
for w, ,,,, this gives

Jffwor(1-5) N )220 2 ) ) g )

il vz (v (1002 ) )
1+—| ¢, —5 —J )= "k
{4 e (v (1+a )

_(_f;ﬂﬂ(l 1— y_x>]}d dfdvd
e O ) [paxds dvan

= [[ 2ra) a0 {1 +£{;’E—w\;—§”} WO, ) dy dw.

Now subtract from both sides of the last equation the term

[ ris(9) aw) ww, ) dy aw,

multiply through by \/JV » and use the approximate identity | xpy, (x) dx =
O(N/%), to find after using smoothness of ¥ to translate a difference
quotient into a derivative plus remainder,

E 2
ffpx,ﬂ(y) gv(w) [I—SE (y—m) wa—g (W, p) +¥(w, y) (—% (w—p) ﬂ]dy daw

o L 2 (90, £008) 30— Yo, ) iy o,
G
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where ~ means that the difference between the two sides converges to 0 as
N — co. This implies that

f f Px.. (¥) gx(W) [(y-—wu)(w—#l) Y(w, y)

(=)o
B

Since ¥ is an arbitrary smooth compactly supported function, and since
integration by parts says that

d
(y mu)w%(w,y)]dydwxo.

[ ) 2% (0, 3) dw = —[ Yw, Y (w)+ £ 0)) div,

it follows that, up to terms converging to 0 as N — co,

ﬂ Px,,. (¥) gv(w) [(y—u)(w—ﬂl) y(w, y)

(1 #) )
ﬁ3

Since W is an arbitrary smooth compactly supported function on
[0, c0)x [0, 1], we can equate 0 to the integrand of the last integrals to
obtain the approximate equation

e e ) a7

2

(=) Ww, YYHE )+ £ ) [y o0,

All solutions to this equation have the form

1—ui/o3
log g(w) = —I(%+%)dw
2

2
=c-5 (‘”—;—1)1ogw
o5 g

for some constant C, and the only such solution g which is a probability
density on [0, 00} is the Gamma(u} /o3, u; /o3) density, which has mean u,
and variance o3 = u, — ui.

Thus, the equality up to order N~/ terms of (expectations with respect
to) the distributions of (w,,, X,) and of (w,,,,, X,,,) has been shown to
imply that the wealth variables w, ,,, must be approximately gamma. The
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second moment of w,, is not predicted from this development, although it
is connected to the limiting variance of the variables \/]Tf (9:11 —9) through

2
0l

Asymptotic variance of \/]TT & -9 = 7

7. DISCUSSION

We simulated the evolution of artificial markets in which individuals buy
and sell goods in order to achieve a certain fraction f of their wealth in
each type of good. In our model, the prices of goods were determined
endogenously to equate fixed supply with variable demand. In contrast to
an analysis in which individual preferences are fixed, we randomized pref-
erences periodically, with preference probabilities determined by various
distribution functions. The purpose of the repeated randomization was to
see how stochastic forces would alter the distribution of goods and wealth.
While goods and wealth were continuously exchanged among individuals,
their distributions came to an equilibrium, independent of starting condi-
tions, determined by the form of the distribution of preferences for good A
versus B,

Remarkably, the equilibrium densities of goods and wealth had the same
mathematical form p(x) = y’x"~'e™/I'(v) for all preference distributions
tested. While this form was suggested for the case of uniform preferences,
it was not obvious that it should hold for non-uniform preferences.
Nevertheless, we showed by an extension of the central limit theorem that
if individual wealths behave in steady state as identically distributed, inde-
pendent variables conditioned on their fixed sum, then all preference func-
tions satisfying reasonable continuity conditions lead to steady-state
gamma distributions for wealth. The mathematical derivation (Eq. (11))
shows how the shape factor v depends on the mean and variance of the
preference distribution and the variance of successive price ratios. The
latter is clearly determined by the preference distribution, but we do not, at
present, have a method other than simulation to calculate it. While theory
- predicts the asymptotic behavior for large N, it is remarkable that simula-
tions with as few as 1000 individuals led to equilibrium distributions very
close to the asymptotic limit. Thus, characteristics of the “thermodynamic
limit” may already be apparent in systems with modest numbers of indi-
viduals.

We do not propose the model outlined here as an accurate description of
human behavior in economic markets. Rather, we view the model as an aid
to thinking about how statistical phenomena may influence economic out-
comes such as the distribution of wealth. In the model, inequality in wealth
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is seen to be a consequence of stochastic forces even when all individuals
are equivalent. Wealth disparity increases, the greater the diversity in pref- -
erences, and decreases, the larger the number of goods traded. Since the
shape parameter v of the gamma distribution corresponds to the number of
goods traded in the case of uniform preferences, nonuniform preference
functions can be viewed as having different effective numbers of goods
traded, with more heterogencous (U-shaped) preferences corresponding to
a reduced number of goods. The similaritics between the economics model
and the statistical treatment of an ideal gas in physics suggests ways in
which the economics model might be modified to take into account
interactions between individuals that allow correlation among their pref-
erences. The method used to derive probabilistically the form of the steady
state depends on the particular feature of the transition mechanism that
individual agents’ wealths evolve independently and symmetrically except
for rebalancing in each generation. Such a rebalancing mechanism seems
characteristic of price-allocation within mathematical economics but can
arise also in neural-network or machine-learning models.
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