1) In a bowl there are 3 balls numbered form 1 to 3 . You extract two of them without reinsertion. Let X_{1} the result of the first extraction and X_{2} the result of the second one. Compute:
a) the joint probability mass function $p\left(x_{1}, x_{2}\right)$ of X_{1} and X_{2}.

There are six possible outcomes: $\{(1,2),(1,3),(2,3),(2,1),(3,2),(3,1)\}$ and they have all the same probability. So we have

$$
\begin{aligned}
& p(1,2)=p(1,3)=p(2,3)=p(2,1)=p(3,2)=p(3,1)=\frac{1}{6} \\
& p(1,1)=p(2,2)=p(3,3)=0
\end{aligned}
$$

b) the probability mass function of $Y=X_{1}+X_{2}$ and the expected value $E\left(X_{1}+X_{2}\right)$. There are 3 possible values for Y : 3, 4 and 5. Each of them can be obtained in two ways. So that we have

$$
p_{Y}(3)=p_{Y}(4)=p_{Y}(5)=\frac{1}{3}
$$

The expected value is

$$
E\left(X_{1}+X_{2}\right)=\frac{1}{3}(3+4+5)=4
$$

c) the marginal $p_{X_{1}}\left(x_{1}\right)$ with respect to X_{1} of $p\left(x_{1}, x_{2}\right)$ and the conditional probability mass function $p_{X_{1} \mid X_{2}}\left(x_{1} \mid x_{2}\right)$.
The marginal $p_{X_{1}}\left(x_{1}\right)$ is just the probability of getting x_{1} at the first extraction so that:

$$
p_{X_{1}}(1)=p_{X_{1}}(2)=p_{X_{1}}(3)=\frac{1}{3}
$$

The conditional probability mass function is given by:

$$
p_{X_{1} \mid X_{2}}\left(x_{1} \mid x_{2}\right)=\frac{p\left(x_{1}, x_{2}\right)}{p_{X_{2}}\left(x_{2}\right)}
$$

where

$$
p_{X_{2}}(1)=p_{X_{2}}(2)=p_{X_{2}}(3)=\frac{1}{3}
$$

like for X_{1}. So we get

$$
\begin{aligned}
p_{X_{1} \mid X_{2}}(1 \mid 2) & =p_{X_{1} \mid X_{2}}(1 \mid 3)=p_{X_{1} \mid X_{2}}(2 \mid 3)=p_{X_{1} \mid X_{2}}(2 \mid 1)= \\
& =p_{X_{1} \mid X_{2}}(3 \mid 2)==p_{X_{1} \mid X_{2}}(3 \mid 1)=\frac{1}{2} \\
p_{X_{1} \mid X_{2}}(1 \mid 1) & =p_{X_{1} \mid X_{2}}(2 \mid 2)=p_{X_{1} \mid X_{2}}(3 \mid 3)=0
\end{aligned} .
$$

d) $\operatorname{cov}(X, Y)$. Are X_{1} and X_{2} independent? Why?

We have that

$$
E\left(X_{1}\right)=E\left(X_{2}\right)=\frac{1}{3}(1+2+3)=2
$$

and

$$
E\left(X_{1} X_{2}\right)=\frac{1}{6}(1 \cdot 2+1 \cdot 3+2 \cdot 3+2 \cdot 1+3 \cdot 1+3 \cdot 2)=\frac{11}{3}
$$

so that

$$
\operatorname{cov}(X, Y)=\frac{11}{3}-4=-\frac{1}{3}
$$

The covariance is not 0 so they cannot be independent.
2) Let X be an exponential rv with parameter $\lambda=2$ and Y be a uniform rv between 0 and 1. Assume that X and Y are independent. Compute:
a) the joint probability distribution function $f(x, y)$ of X and Y.

The variable are independent so that the joint probability distribution function $f(x, y)$ is the product of the marginal:

$$
f(x, y)= \begin{cases}2 e^{-2 x} & x>0 \text { and } 0<y<1 \\ 0 & \text { otherwise }\end{cases}
$$

b) the probability that $X>3$ and $Y>0.5$

We have that $P(\{X>3\} \cap\{Y>0.5\})=P(X>3) P Y>0.5)=e^{-2 \cdot 3} \cdot 0.5=$ $e^{-6} / 2$.
c) the probability that X is larger than Y, that is $P(X>Y)$.

$$
\begin{aligned}
P(X>Y) & =\iint_{x>y} f(x, y) d x d y=\int_{0}^{1} \int_{y}^{\infty} 2 e^{-2 x} d x d y= \\
& =\int_{0}^{1} e^{-2 y} d y=\frac{1}{2}\left(1-e^{-2}\right)
\end{aligned}
$$

(Bonus) Assume now that X and Y are not independent but X is still exponential with parameter $\lambda=2$ while the conditional probability of Y given X is $f_{Y \mid X}(y \mid x)=$ $1 / x$ for $0<y<x$ and $f_{Y \mid X}(y \mid x)=0$ otherwise. Compute
d) the joint probability distribution function $f(x, y)$ of X and Y.

We have

$$
f(x, y)=f_{Y \mid X}(y \mid x) f_{X}(x)= \begin{cases}\frac{2}{x} e^{-2 x} & x>0 \text { and } 0<y<x \\ 0 & \text { otherwise }\end{cases}
$$

e) the covariance of X and $Y, \operatorname{cov}(X, Y)$.
(Hint: remember that:

$$
\int_{0}^{\infty} \lambda x e^{-\lambda x}=\frac{1}{\lambda} \quad \int_{0}^{\infty} \lambda x^{2} e^{-\lambda x}=\frac{2}{\lambda^{2}}
$$

).

$$
\begin{aligned}
& E(X)=\int_{0}^{\infty} \int_{0}^{x} 2 e^{-2 x} d y d x=\int_{0}^{\infty} 2 x e^{-2 x} d x=\frac{1}{2} \\
& E(Y)=\int_{0}^{\infty} \int_{0}^{x} \frac{2 y}{x} e^{-2 x} d y d x=\int_{0}^{\infty} x e^{-2 x} d x=\frac{1}{4}
\end{aligned}
$$

while

$$
E(X Y)=\int_{0}^{\infty} \int_{0}^{x} 2 y e^{-2 x} d y d x=\int_{0}^{\infty} x^{2} e^{-2 x} d x=\frac{1}{4}
$$

so that

$$
\operatorname{cov}(X, Y)=\frac{1}{4}-\frac{1}{4} \cdot \frac{1}{2}=\frac{1}{4}
$$

3) You reach campus driving while a friend of yours use public transportation. The time you need to reach campus is described by a rv X with $E(X)=1 h$ and standard deviation $\sigma_{X}=0.3 h$ while the time needed by your friend is a rv Y with $E(Y)=1.2 h$ and standard deviation $\sigma_{Y}=0.5 h$. In a semester you both go to campus 100 times. Moreover the times needed to reach campus on different days are independent. Let T_{x} be the total time you spend driving during a semester.
a) What is the (approximate) distribution of T_{X} ? Compute $P\left(T_{X}>110\right)$.
T_{X} is (approximatively) a normal random variable with parameters $\mu=100$ and $\sigma^{2}=100 \cdot 0.3^{2}$. So that we have

$$
P\left(T_{X}>110\right)=1-\Phi\left(\frac{110-100}{10 \cdot 0.3}\right)=1-\Phi(3.33)=0.0004
$$

Call \bar{X} the average time (over the semester) you spend driving to campus and \bar{Y} the average time your friend spend in the public transportation system.
b) compute $P(\bar{X}>1.05)$ and $P(1.1<\bar{Y}<1.3)$.

$$
\bar{X} \simeq N\left(1, \frac{0.3^{2}}{100}\right) \quad \bar{Y} \simeq N\left(1.2, \frac{0.5^{2}}{100}\right)
$$

so that

$$
\begin{aligned}
P(\bar{X}>1.05) & =1-\Phi\left(\frac{10(1.05-1)}{0.3}\right)=1-\Phi(1.67)=0.0475 \\
P(1.1<\bar{Y}<1.3) & =\Phi\left(\frac{10(1.3-1.2)}{0.5}\right)-\Phi\left(\frac{10(1.1-1.2)}{0.5}\right)= \\
& =\Phi(2)-\Phi(-2)=0.9544
\end{aligned}
$$

c) compute $P(\bar{X}>\bar{Y})$.

Let $Z=\bar{X}-\bar{Y}$. Then

$$
Z \simeq N\left(-0.2, \frac{0.3^{2}+0.5^{2}}{100}\right)
$$

so that

$$
P(\bar{X}>\bar{Y})=P(\bar{X}-\bar{Y}>0)=1-\Phi\left(\frac{-0.2 \cdot 10}{\sqrt{0.3^{2}+0.5^{2}}}\right)=1-\Phi(3.42)=0.0003
$$

