Page 1

Let call Y the r.v. that counts the number of working bulbs. Than Y is distributed as a binomial of parameters $10, p$, i.e. $Y \simeq \operatorname{Bin}(10, p)$.

1) the requested probability is

$$
P(Y=10)=b(10 ; 10, p)=p^{10}=0.904
$$

2)

$$
P(Y=4)=b(4 ; 10, p)=\binom{10}{4} p^{4}(1-p)^{6}=2.1 \cdot 10^{-10}
$$

3) he expected value is $E(Y)=10 p=9.9$ and the variance is $V(X)=10 p(1-p)=0.099$

Page 2

4) Observe that after a mounth each bulb is working or not working independently from the others so the X is a binomial variable of parameters 10 and p^{\prime}, where p^{\prime} is the probability that a given bulb is still working after a month. This probability is given by the probability that it was working at the initial time time the probability that it did not break down during the month of use, i.e. $p^{\prime}=p(1-q)=0.99 \cdot 0.9=0.891$. So we have that $X \simeq \operatorname{Bin}(10,0.891)$ and the p.m.f. of $P(X=x)=b(x ; 10,0.891)$. In particular

$$
P(X=8)=b(8 ; 10,0.891)=\binom{10}{8} 0.891^{8} \cdot 0.109^{2}=0.212
$$

You can reach the same result calling Z the random variable that counts how many bulbs brake down in a mounts and obeserving that, if $Y=y$, than $Z \simeq \operatorname{Bin}(y, 0.1)$. Than

$$
\begin{aligned}
P(X=8) & =P(Y=10) P(Z=2)+P(Y=9) P(Z=1)+P(Y=8) P(Z=0)= \\
& =b(10 ; 10,0.99) b(2 ; 10,0.1)+b(9 ; 10,0.99) b(1 ; 9,0.1)+ \\
& +b(8 ; 10,0.99) b(0,8,0.1)
\end{aligned}
$$

that gives the same result as above.
5) The requested probability is $P\left(A \mid B^{\prime}\right)$. Using the product rule we get

$$
P\left(A \mid B^{\prime}\right)=P\left(B^{\prime} \mid A\right) \frac{P(A)}{P\left(B^{\prime}\right)}=0.1 \frac{0.99}{0.109}=0.908
$$

This is true because $P\left(B^{\prime} \mid A\right)$ is the probability that the bulb breaks down during use and $P\left(B^{\prime}\right)=1-P(B)$ was computed in point 4.

Page 3

6) The probability that the light will not go on is 1 minus the probability that all bulbs work. This was computed in point 1 so that the requested probability is $1-0.904=0.086$.
7) The light does not go on if at least one of the bulbs is broken so that the events $\{$ the light does not go on $\}=\bigcup_{i=1}^{10} A_{i}^{\prime}$. Clearly the event $\{$ the first bulb is not working $\}=A_{1}^{\prime}$. Thus

$$
P\left(A_{1}^{\prime} \mid \bigcup_{i=1}^{10} A_{i}^{\prime}\right)=\frac{P\left(A_{1}^{\prime} \cap\left(\bigcup_{i=1}^{10} A_{i}^{\prime}\right)\right)}{P\left(\bigcup_{i=1}^{10} A_{i}^{\prime}\right)}=\frac{P\left(A_{1}^{\prime}\right)}{P\left(\bigcup_{i=1}^{10} A_{i}^{\prime}\right)}=\frac{0.01}{0.086}=0.116
$$

This is true because $A_{1}^{\prime} \subset \bigcup_{i=1}^{10} A_{i}^{\prime}$ so that $A_{1}^{\prime} \cap\left(\bigcup_{i=1}^{10} A_{i}^{\prime}\right)=A_{1}^{\prime}$ and $P\left(\bigcup_{i=1}^{10} A_{i}^{\prime}\right)$ was computed in point 6 .
8) The event $\{$ only the first bulb does not work $\}$ is given by $C=A_{1}^{\prime} \cap\left(\bigcup_{i=2}^{10} A_{i}\right)$. We again have that $C \subset \bigcup_{i=1}^{10} A_{i}^{\prime}$ so that the requested porbability is

$$
P\left(A_{1}^{\prime} \cap\left(\bigcap_{i=2}^{10} A_{i}\right) \mid \bigcup_{i=1}^{10} A_{i}^{\prime}\right)=\frac{P\left(A_{1}^{\prime} \cap\left(\bigcap_{i=2}^{10} A_{i}\right)\right)}{P\left(\bigcup_{i=1}^{10} A_{i}^{\prime}\right)}=\frac{0.01 \cdot 0.99^{9}}{0.086}=0.106
$$

Page 4

9) Clearly we have that $Y \simeq H(10,20,2)$. The light goes on in Room 1 if and only if there are 0 non working bulbs in Room 1 so that the requested probability is

$$
h(0 ; 10,20,2)=\frac{\binom{18}{10}\binom{2}{0}}{\binom{20}{10}}=\frac{18!}{10!\cdot 8!} \cdot \frac{10!\cdot 10!}{20!}=\frac{10 \cdot 9}{20 \cdot 19}=0.237
$$

10) the probability requested is $P(Y=1)$ because if there is only one non working bulb in Room 1 the other non working bulb has to be in Room 2. We have

$$
P(Y=1)=h(1 ; 10,20,2)=\frac{\binom{18}{9}\binom{2}{1}}{\binom{20}{10}}=2 \cdot \frac{18!}{9!\cdot 9!} \cdot \frac{10!\cdot 10!}{20!}=\frac{2 \cdot 10 \cdot 10}{20 \cdot 19}=0.526
$$

Page 5

11) Let again Y be the r.v. that counts the number of non working bulbs in Room 1. We have $Y \simeq H(10,20,5)$ so that:

$$
\begin{aligned}
P(Y=3)=h(3 ; 10,20,5) & =\frac{\binom{15}{7}\binom{5}{3}}{\binom{20}{10}}=\frac{15!}{7!\cdot 8!} \cdot \frac{5!}{3!\cdot 2!} \cdot \frac{10!\cdot 10!}{20!}= \\
& =\frac{10 \cdot 9 \cdot 8 \cdot 10 \cdot 9 \cdot 5 \cdot 4}{2 \cdot 20 \cdot 19 \cdot 18 \cdot 17 \cdot 16}=0.348
\end{aligned}
$$

while

$$
P(Y=0)=h(2 ; 10,20,5)=\frac{\binom{15}{8}\binom{5}{2}}{\binom{20}{10}}=\frac{15!}{8!\cdot 7!} \cdot \frac{5!}{2!\cdot 3!} \cdot \frac{10!\cdot 10!}{20!}=0.348
$$

12) The requested probability is:

$$
\begin{aligned}
P(Y=0)=h(0 ; 10,20,5) & =\frac{\binom{15}{10}\binom{5}{0}}{\binom{20}{10}}=\frac{15!}{10!\cdot 5!} \cdot \frac{10!\cdot 10!}{20!}= \\
& =\frac{10 \cdot 9 \cdot 8 \cdot 7 \cdot 6}{20 \cdot 19 \cdot 18 \cdot 17 \cdot 16}=0.0162
\end{aligned}
$$

