Fall 05
Math 4581

Name:
Final Bonetto

1) The equation governing the temperature in a rod of length 1 is:

$$
\left\{\begin{aligned}
\frac{\partial u(x, t)}{\partial t} & =\frac{\partial^{2} u(x, t)}{\partial x^{2}}+c(T-u(x, t)) \quad 0<x<1 \\
u(0, t) & =T \\
\frac{\partial u(1, t)}{\partial x} & =\Phi \\
u(x, 0) & =T
\end{aligned}\right.
$$

a) Find the steady state for this equation and write the equation for the difference $w(x, t)=u(x, t)-v(x)$.
b) Use separation of variables to write the general solution of the equation.
c) Using that

$$
\begin{aligned}
& \int e^{k x} \sin (\lambda x) d x=\frac{e^{k x}(k \sin (\lambda x)-\lambda \cos (\lambda x))}{k^{2}+\lambda^{2}} \\
& \int e^{k x} \cos (\lambda x) d x=\frac{e^{k x}(k \cos (\lambda x)+\lambda \sin (\lambda x))}{k^{2}+\lambda^{2}}
\end{aligned}
$$

find the solution of the equation with the given initial condition.
d) Assume now that the conductivity depend on x. The equation becomes:

$$
\left\{\begin{aligned}
p(x) \frac{\partial u(x, t)}{\partial t} & =\frac{\partial^{2} u(x, t)}{\partial x^{2}}+c(T-u(x, t)) \\
u(0, t) & =T \\
\frac{\partial u(1, t)}{\partial x} & =\Phi \\
u(x, 0) & =T
\end{aligned}\right.
$$

Use separation of variable to reduce the problem to a Sturm-Liouville problem. Write the solution of the the above equation using the solution of the Sturm Louiville problem (without finding them) and write an equation for the coefficient.
2) A square membrane of side 1 made of an anisotropic material vibrates freely with the boundary held fixed. The equation is thus

$$
\left\{\begin{aligned}
\frac{\partial^{2} u(x, y, t)}{\partial t^{2}} & =\frac{\partial^{2} u(x, y, t)}{\partial x^{2}}+2.5 \frac{\partial^{2} u(x, y, t)}{\partial y^{2}} \\
u(0, y, t) & =u(1, y, t)=u(x, 0, t)=u(x, 1, t)=0 \\
u(x, y, 0) & =f(x, y) \\
\frac{\partial u(x, y, 0)}{\partial t} & =g(x, y)
\end{aligned}\right.
$$

where $0<x<1$ and $0<y<1$.
a) Use separation of variables to write the equation as an equation on t and one on x, y (eigenvalues equation). Write the general solution of the equation on t.
b) Use separation of variables again to write the eigenvalues equation as two SturmLiouville problems, one for x and one for y. State clearly the relation between the solutions of these two Sturm-Liouville problems and those of the initial eigenvalues equation.
c) Find the solution of the Sturm-Liouville problems of point b).
d) Write the lowest 5 natural frequencies of the membrane. Remember that if $f(t)=$ $\cos (\omega t)$ than the frequency of f is $\omega / 2 \pi$.
e) Using the results of a$), \mathrm{b}$) and c) write the general solution of this equation.
3) A string of length 2 is governed by the equation

$$
\left\{\begin{aligned}
\frac{\partial^{2} u(x, t)}{\partial t^{2}} & =\frac{\partial^{2} u(x, t)}{\partial x^{2}} \\
u(0, t) & =u(2, t)=0 \\
u(x, 0) & =f(x) \\
\frac{\partial u(x, 0)}{\partial t} & =g(x)
\end{aligned}\right.
$$

where

$$
f(x)= \begin{cases}2 x-2(1-a) & 1-a<x<1 \\ -2 x+2(1+a) & 1<x<1+a \\ 0 & \text { otherwise } \\ g(x)=0 & \end{cases}
$$

and $a=0.2$. Sketch the solution of the equation for $t=0.1,0.4,1$ and 1.4. Write the analytic form of the solution for $t=0.4$.

Let now the initial condition be

$$
f(x)= \begin{cases}x-(1-2 a) & 1-2 a<x<1-a \\ -x+1 & 1-a<x<1 \\ x-1 & 1<x<1+a \\ -x+(1+2 a) & 1+a<x<1+2 a \\ 0 & \text { otherwise }\end{cases}
$$

and

$$
g(x)= \begin{cases}1 & 1-2 a<x<1-a \\ -1 & 1-a<x<1 \\ 1 & 1<x<1+a \\ -1 & 1+a<x<1+2 a \\ 0 & \text { otherwise }\end{cases}
$$

where, as before, $a=0.2$. Find and sketch the solution at $t=0.2$. (Hint: relate the initial conditions to the previous ones).

