
2.6. Stability and Perturbations.

In this section, we give some simple results concerned with the effects of pertur-
bations in the vector field upon the stability of a given system. They are obtained by
means of the variation of constants formula and Gronwall’s inequality.

Theorem 6.1. Suppose that A, B ∈ C0(lR, lRd×d) (or A, B ∈ C0(lR, Cl d×d)) are d×d
matrix functions and B satisfies

(6.1) L ≡

∫ ∞

0

|B(s)| ds < ∞ .

If the zero solution of (1.1) is uniformly stable on [0, ∞), then the zero solution of
the equation

(6.2) ẏ = [A(t) + B(t)]y

is uniformly stable on [0, ∞).

Proof. Let X(t) is a fundamental matrix solution of (1.1) and let y(t) be the solution
of (6.2) with initial data (τ, ξ). If we consider the term B(t)y(t) as a nonhomogeneous
term in (6.2) and apply the variation of constants formula, then

y(t) = X(t)X−1(τ)ξ +

∫ t

τ

X(t)X−1(s)B(s)y(s) ds .

From our hypothesis on (1.1) and Theorem 3.1, there is a constant k such that
|X(t)X−1(s)| ≤ k for t ≥ s ≥ 0. Using the formula for y(t) and this estimate,
we obtain

|y(t)| ≤ k|ξ| +

∫ t

τ

k|B(s)||y(s)| ds .

An application of Gronwall’s Inequality yields

|y(t)| ≤ k|ξ|e

∫

t

τ

k|B(s)| ds
≤ k|ξ|ekL .

If Y (t) is a fundamental matrix solution of (6.2), then y(t) = Y (t)Y −1(τ)ξ and the
above inequality shows that |Y (t)Y −1(τ)| ≤ kekL for all t ≥ τ ≥ 0. Theorem 3.1
implies that the zero solution of (6.1) is uniformly stable and the proof of the theorem
is complete.

The proof of Theorem 6.1 is very simple and the results are not surprising to the
intuition in the sense that stability should be preserved under small perturbations of
the vector field. On the other hand, extreme care must be exercised on the allowable
size of the perturbation. For example, the equation ü−2t−1u̇+u = 0 has the solutions
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sin t − t cos t, cos t + t sin t and therefore the zero solution is unstable. As t → ∞,
the vector field in this equation approaches the linear oscillator which is uniformly
stable. The rate of approach of course is not as fast as in Theorem 6.1.

Exercise 6.1. Prove the following assertion: If A is a constant d × d matrix and
eAt is bounded on (−∞, ∞) (that is, the zero solution of the autonomous equation
ẋ = Ax is uniformly stable on (−∞, ∞)), and B satisfies (6.1), then, for any d-vector
ξ, there is a unique solution y(t) of ẏ = [A + B(t)]y such that eAtξ − y(t) → 0 as
t → ∞.

Exercise 6.2. Generalize Exercise 6.1 to the case where the matrix A depends upon
t.

Theorem 6.2. Suppose that A, B ∈ C(lR, lRd×d) (or A ∈ C(lR, Cl d×d)) are d × d
matrix functions. If the zero solution of (1.1) is uniformly asymptotically stable on
[0, ∞), then there is a δ > 0 such that, if B satisfies

(6.3) |B(t)| < δ for t ∈ [0, ∞) ,

the zero solution of the equation of (6.2) is uniformly asymptotically stable on [0, ∞).

Exercise 6.3. Prove Theorem 6.2.

Exercise 6.4. Suppose that the matrix B in (6.2) satisfies

∫ t

t0

|B(s)| ds < γ(t − t0) + c for t ≥ t0 ≥ 0 ,

Prove the following fact: If the zero solution of (1.1) is uniformly asymptotically
stable on [0, ∞), then there is a δ > 0 such that, if γ ≤ δ, then the zero solution of
equation (6.2) is uniformly asymptotically stable on [0, ∞).

Example 6.1. It is possible to have the zero solution of (1.1) asymptotically stable
(but, of course, not uniformly asymptotically stable) and to construct a perturbation
B satisfying (6.1) as well as (6.3) and yet the zero solution of (6.2) is unstable. In
fact, this is the case for

A(t) =

[

−a 0
0 sin log t + cos log t − 2a

]

and

B(t) =

[

0 0
e−at 0

]

,

where 1 < a < 1 + e−π . To show that this is the case, we take the initial time as 0
and observe that the solution of (1.1) through ξ = col (ξ1, ξ2) is given by

x1(t) = ξ1e
−at, x2(t) = ξ2e

t sin log t−2at
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and the solution of (1.1) is asymptotically stable. If we choose ξ1 = 1, ξ2 = 0, then
the solution of (6.1) is given by

y1(t) = e−at, y2(t) = et sin log t−2at

∫ t

0

e−s sin log s ds .

If we choose α ∈ (0, π/2) and tn = e(2n− 1

2
)π, n = 1, 2, . . . , then sin log s ≤ − cos α

for tn ≤ s ≤ tneα. Hence,

∫ tne
α

0

e− sin log s ds >

∫ tne
α

tn

e− sin log s ds

≥

∫ tne
α

0

es cos α ds > tn(eα − 1)etn cos α .

Since sin log (tneπ) = 1, we have

|y2(tneπ)| ≥ tn(eα − 1)ebtn ,

where b = (1 − 2a)eπ + cos α. If we choose α so that b > 0, then |y2(tneπ)| → ∞ as
n → ∞ and the system (6.1) is unstable.

Theorem 6.3. (Principle of Linearization) Suppose that f ∈ Cr(lR×lRd, lRd), r ≥ 1,
f(t, 0) = 0, A(t) = ∂f(t, 0)/∂x and the function g(t, y) ≡ f(t, y) − A(t)y satisfies
the property that, for any ǫ > 0, there is a δ > 0 such that

(6.4) |g(t, y)| ≤ ǫ|y| for |y| ≤ δ t ≥ 0 .

If the zero solution of (1.1) is uniformly asymptotically stable, then the zero solution
of

(6.5) ẋ = f(t, x)

is uniformly asymptotically stable.

Proof. If X(t) is a fundamental matrix solution of (1.1), then the fact that the zero
solution of (1.1) is uniformly asymptotically stable implies that there are constants
k ≥ 1, α > 0 such that |X(t)X−1(τ)| ≤ ke−α(t−τ) for t ≥ τ ≥ 0. Choose ǫ ∈ (0, α/k)
and δ so that (6.4) is satisfied. Let y(t) be the solution of (6.5) with initial data
(τ, ξ) with τ ≥ 0, |ξ| < (δ/2k) < δ. Writing (6.5) as ẏ = A(t)y + g(t, y) and using the
variation of constants formula, we have

y(t) = X(t)X−1(τ)ξ +

∫ t

τ

X(t)X−1(s)g(s, y(s)) ds .
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As long as the solution y(t) remains in norm < δ, we can use (6.4) to obtain the
estimate

|y(t)| ≤ ke−α(t−τ)|ξ|+

∫ t

τ

ke−α(t−s)ǫ|y(s)| ds .

Multiplying both sides of this inequality by eαt and applying Gronwall’s inequality,
we obtain

eαt|y(t)| ≤ keατ |ξ|e

∫

t

τ

kǫ ds
= keατ |ξ|ekǫ(t−τ)

or, using the facts that |ξ| < (δ/2k), ǫ < α/k, we deduce that

(6.6) |y(t)| ≤ k|ξ|e−(α−kǫ)(t−τ) ≤
δ

2

for all t ≥ τ for which |y(t)| < δ. The continuation theorem implies that y(t) exists
for all t ≥ τ and thus the inequality (6.6) holds for all t ≥ τ. Since α − kǫ > 0, this
completes the proof of the theorem.

Corollary 6.1. If f ∈ Cr(lRd, lRd), r ≥ 1, and there is an x0 ∈ lRd such that
f(x0) = 0, and Re σ(∂f(x0)/∂x) < 0, then the equilibrium solution x0 of the equation
ẋ = f(x) is a local attractor.

Exercise 6.5. Find the equilibrium points of the following equations and list the
ones which are uniformly asymptotically stable:

ẋ1 = x2, ẋ2 = −ω2 sin x1 − 2ax2, a > 0 ,

ẋ1 = 2x1 − x2
1 − x1x2, ẋ2 = −x2 + x1x2 .
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