
2.8.2. Affine Maps.

In this section, we discuss affine maps in the same spirit as we have discussed
nonhomogeneous linear systems in Section 2.6.

Let L be a d×d complex matrix and let { gk }
∞

k=0 be a given sequence of complex
d-vectors. For each integer n ≥ 0, we consider the map

L + gn : Cl d → Cl d x 7→ Lx + gn .

The objective is to understand the behavior of the sequence { xn }∞n=0 defined by

(8.5) xn = Lxn−1 + gn−1, n ≥ 1, x0 arbitrary .

Example 8.3. Consider the nonhomogeneous differential equation ẋ = Ax + g(t),
where A is a d × d constant matrix and g is a continuous d-vector. The variation of
constants formula for this equation is

x(t) = eA(t−τ)x(τ) +

∫ t

τ

eA(t−s)g(s) ds = eA(t−τ)x(τ) +

∫ t−τ

0

eA(t−τ−s)g(s + τ) ds.

If we define x(n) = xn, n ≥ 0, and take t = n, τ = n − 1, then, for n ≥ 1, we have

xn = eAxn−1 +

∫ 1

0

eA(1−s)g(s + n − 1) ds ≡ Lxn−1 + gn−1 ,

where L = eA, gn−1 =
∫ 1

0
eA(1−s)g(s+n−1) ds. In this way, we obtain a special case

of a map (8.5). This map is called the time one map of the differential equation and
the point x0 is the initial condition.

Exercise 8.3. Suppose that g is a continuous 1-periodic d-vector function, A is a
constant d × d matrix and consider the equation ẋ = Ax + g(t). Show that the time

one map is given by L + g0, where L = eA and g0 =
∫ 1

0
eA(1−s)g(s) ds. Recall that

fixed points of L+g0 correspond to 1-periodic solutions of the differential equation. If
the orthogonality condition in the Fredholm Alternative is satisfied, then there must
be a fixed point of L + g0. Interpret this condition in terms of the left eigenvectors of
L corresponding to the eigenvalue 1.

The analogue of the variation of constants formula for the sequence in (8.5) is to
express the value of xn in terms of the initial condition x0, the operator L and the
sequence { gn }. It is easy to verify that this is given by

(8.6) xn = Lnx0 + Σn−1
j=0 Ln−j−1gj .

2.8.3. Stability and Perturbations.

In this section, we give some simple results concerned with the effects that per-
turbations of a linear map on lRd will have upon the stability of the origin. They are
obtained by means of the variation of constants formula and simple inequalities.

1



Theorem 8.2. Suppose that L is a real d × d matrix, Mn, n ≥ 0, are real d × d
matrices satisfying

(8.7) m0 ≡ sup{ |Mn|, n ≥ 0 } < ∞

and define the sequence

(8.8) xn = (L + Mn−1)xn−1, n ≥ 1, x0 arbitrary .

If the origin is a global attractor for the map L, then there are constants k > 0, 0 ≤
c < 1, δ > 0 such that, if m0 < δ, then

(8.9) |xn| ≤ kcn|x0|, n ≥ 1 .

Proof. If we consider the term Mn−1xn−1 as a nonhomogeneous term, then the
formula (8.6) yields

xn = Lnx0 + Σn−1
j=0 Ln−j−1Mjxj , n ≥ 1 .

Since the origin is a global attractor for L, it follows from Lemmas 8.3 and 8.2 that
there are constants k1 ≥ 1, 0 ≤ c1 < 1, such that |Ln| ≤ k1c

n
1 for n ≥ 0. Thus, we

can obtain the following estimate for n ≥ 1:

|xn| ≤ k1c
n
1 |x0| + Σn−1

j=0 k1c
n−1−j
1 |Mj| |xj|

≤ k1c
n
1 |x0| + Σn−1

j=0 m0k1c
n−1−j
1 |xj | .

If c1 = 0, this inequality is |xn| ≤ m0k1|xn−1|, n ≥ 1, and so |xn| ≤ (m0k1)
n|x0|. If

m0k1 < 1, we have the conclusion in the theorem by taking any fixed δ < k−1
1 , k = 1,

c = δk1. Let us now assume that c1 > 0. If we let yj = c−j
1 |xj |, j ≥ 0, then we have

yn ≤ k1y0 + k1m0c
−1
1 Σn−1

j=0 yj .

If we define a sequence { zn, n ≥ 0, } be replacing the inequality by equality and let
z0 = y0, z1 = k1z0+k1m0c

−1
1 z0, then yn ≤ zn for all n ≥ 0. The sequence { zn, n ≥ 2 }

satisfies the relation

zn = k1z0 + k1m0c
−1
1 Σn−1

j=0 zj

= zn−1 + k1m0c
−1
1 zn−1 = (1 + k1m0c

−1
1 )zn−1 .

This implies that

zn ≤ (1 + k1m0c
−1
1 )n−1z1 ≤ k1(1 + m0c

−1
0 )(1 + k1m0c

−1
1 )n−1z0
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for n ≥ 0. Since yn ≤ zn for all n ≥ 0 and yj = c−j
1 xj for all j ≥ 0 and k1 ≥ 1, we

deduce that
xn ≤ k1c

n
1 (1 + k1m0c

−1
1 )nx0

for n ≥ 0. Since 0 < c1 < 1, we can choose δ > 0 so that c = c1(1 + k1δc
−1
1 ) < 1. If

m0 < δ and k = k1, then we obtain the conclusion stated in the theorem.

Exercise 8.4. For a sequence of real numbers αn ≥ 0, n ≥ 1, show that the infinite
product

∏
∞

n=1(1 + αn) converges if the infinite sum Σ∞

n=1αn converges. Hint. The
mean value theorem shows that there exists θn ∈ [0, 1] such that

log(1 + αn) = log(1 + αn) − log 1 =
αn

1 + θαn

≤ αn.

Exercise 8.5. Consider the mapping

zn = (I + Mn−1)zn−1, n ≥ 1, z0 arbitrary.

Use the previous exercise to find sufficient conditions on the matrices Mn−1, n ≥ 1,
which will ensure that there is a constant k such that |zn| ≤ k|z0| for all n ≥ 0 and
all z0.

Theorem 8.3. (Principle of Linearization) Suppose that f ∈ Cr(lRd, lRd), r ≥ 1,
and x0 is a fixed point of f . If L = ∂f(x0)/∂x and ρ ∈ σ(L) implies |ρ| < 1, then the
fixed point x0 is a local attractor of f .

Proof. If we replace f(x) by f(x+x0)−x0, then we can assume that the fixed point
is 0. Let g(x) = f(x) − Lx. In this case, for any ǫ > 0, there is a δ > 0 such that
|g(x)| < ǫ|x| if |x| < δ. If ξ ∈ lRd is given and we let x0 = ξ, xn = fn(ξ), n ≥ 1, then

xn = Lxn−1 + g(xn−1) = Lnξ + Σn−1
j=0 Ln−1−jg(xj) .

There are constants k ≥ 1, 0 ≤ c < 1, such that (8.3) is valid. If we suppose that
|xj | < δ for 0 ≤ j ≤ n − 1, then we can use (8.3) to obtain the estimate

|xn| ≤ kcn|ξ| + kǫΣn−1
j=0 cn−1−j |xj| .

If we let yj = c−j |xj |, j ≥ 0, then we have

yn ≤ ky0 + kǫΣn−1
j=0 yj .

Now we proceed exactly as in the proof of Theorem 8.2 letting ǫ play the role of
m0. In this way, there are constants ǫ0 > 0, δ0 > 0, 0 ≤ c1 < 1, k1 > 0, such that
|xn| ≤ k1c

n
1 |ξ| as long as |xj | ≤ δ0, j = 0, 1 . . . , n − 1. If we choose δ1 > 0 so that

k1δ1 < δ0 and take |ξ| < δ1, then we have the conclusion stated in the theorem.
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2.8.4. Quadratic Liapunov functions.

For a linear autonomous ordinary differential equation for which the zero solution
was an attractor (asymptotically stable), we showed that there was a positive definite
quadratic form for which the derivative along the solutions was a negative definite
quadratic form. In this way, we had a very geometric understanding of the meaning
of the attractor in terms of the vector field crossing the level sets of the quadratic
form. We show there is an analogous interpretation for the situation of a linear map
with all eigenvalues of modulus < 1.

If A is a given d × d constant matrix, let x′ = Ax for x ∈ lRd. If V : lRd → lR is
a continous function, then the analogue of the above derivative along the solutions is
V (x′) − V (x). If V (x) = x∗Bx is a quadratic form, then

V (x′) − V (x) = x∗(A∗BA − B)x.

If B is positive definite and this quantity is negative definite, then Anx → 0 as n → ∞
(prove this); that is, the eigenvalues of A have modulus < 1. Is it possible to show
that there is such a function V if the eigenvalues of A have modulus < 1? We state
the following result without proof (see, for example, LaSalle, Appl. Math. Sci. 62,
p.36).

Lemma 8.3. Suppose that A, C are given d × d matrices. The equation

(8.9) A∗BA − B = −C

has a solution if and only if A has the property that, if ρ 6= 0 is an eigenvalue of A,
then ρ−1 is not an eigenvalue of A.

Now, suppose that the eigenvalues of A have modulus < 1. Then the conditions
of Lemma 8.3 are satisfied. If we choose C = I, then there is a unique solution B of
(8.9). For any ǫ > 0, by a change of coordinates, we can suppose that each Jordan
block for A has an ǫ in the upper diagonal. Therefore, if we choose ǫ sufficiently small,
then it is clear that B is positive definite. If we let V (x) = x∗Bx, then V serves as a
Liapunov function and V (x′) − V (x) = −x∗x, as we wanted.

Exercise 8.6. Give proofs of Theorem 8.2 and Theorem 8.3 using a quadratic Lia-
punov function.

Exercise 8.7. Prove the following result. Suppose that f ∈ Cr(lRd, lRd), r ≥ 1, and

x0 is a fixed point of f . If L = ∂f(x0)/∂x and ρ ∈ σ(L) implies |ρ| 6= 1, and there is

at least one ρ ∈ σ(L) with |ρ| > 1, then the fixed point x0 is unstable.
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