
1.2. Continuation of solutions.

It is convenient to let the pair (x, I) denote a solution of the initial value problem
(1.2) on the interval I. We say that a solution (y, J) is an extension of (x, I) if I ⊂ J

and x(t) = y(t) on I. We say that (x, I) is a maximal solution of (1.2) if and only if,
for any extension (y, J), we have J = I. In this case, we refer to I as the maximal

interval of existence of the solution of (1.2). If (x, I), I = (α, β), is a solution of
(1.2) and ∂D denotes the boundary of D, then we say that (t, x(t)) approaches the

boundary of D, denoted by (t, x(t)) → ∂D, as t → α (resp. β) in I if, for any compact
set K ⊂ D, there exists ǫ > 0 such that (t, x(t)) ∈ D \ K for all t ∈ (α, α + ǫ) (resp.
t ∈ (β− ǫ, β)). We emphasize that the definition of (t, x(t)) approaches the boundary
of D implies that the solution must eventually leave any compact set of D.

Theorem 2.1. For any solution (x∗, I∗) of (1.2), there exists a maximal solution
(x, I) that is an extension of (x∗, I∗). The interval I is open, I = (α, β),−∞ ≤
α, β ≤ +∞, and (t, x(t)) → ∂D as t → either end point of I.

Proof. We let S = {(y, J) : (y, J) is an extension of (x∗, I∗) } and define the partial
ordering on S by (y1, J1) ≤ (y2, J2) if and only if J1 ⊂ J2 and y1(t) = y2(t) on
J1. It is clear that S is not empty. If S0 is a totally ordered subset of S, we define
I = ∪{ J : (y, J) ∈ S0 } and x(t) = y(t) for all t ∈ I. It follows that (x, I) is an upper
bound of S0 and is clearly an extension of (x∗, I∗). From Zorn’s Lemma, we conclude
that (x∗, I∗) is contained in the maximal solution (x, I).

We prove that I is open by contradiction. Suppose that the end points of I are
α < β. If I contains β and x(β) = ζ, then (β, ζ) ∈ D and the local existence theorem
implies that there is a solution y of (1.1) with initial state ζ at time β existing on an
interval J = [β − ǫ, β + ǫ] for some ǫ > 0. If we define z(t) = x(t) on I, z(t) = y(t)
on (β, β + ǫ), then (z, I ∪ (β, β + ǫ)) is an extension of (x, I), which contradicts the
fact that (x, I) is a maximal solution. The endpoint α is treated in the same way.

We now show that (t, x(t)) → ∂D as t → β. It is clear that we only need to
consider β < ∞. If the maximal solution (x, I) does not approach the boundary, then
there is a compact set K ⊂ D and a monotone sequence { tn }, tn → β as n → ∞,

such that (tn, x(tn)) ∈ K for all n. The compactness of K implies that { x(tn) } has a
convergent subsequence which is again denoted by { x(tn) }. Assume that x(tn) → ζ

as n → ∞. If we show that x(t) → ζ as t → β, then we can apply Theorem 1.1 to
extend the solution to (α, β +ǫ) for some ǫ > 0, which contradicts the fact that (x, I)
is a maximal solution.

It remains to show that x(t) → ζ as t → β. If ā, b̄ are positive real numbers
chosen so that Γ = { (t, x) : |t − β| ≤ ā, |x − ζ| ≤ b̄ } ⊂ D, then we let M =
sup{|f(t, x)| : (t, x) ∈ Γ}. We choose 0 < a ≤ ā, 0 < b ≤ b̄ such that aM ≤ b and
define R = {(t, x) : |t − β| ≤ a, |x − ζ| ≤ b}, R∗ = {(t, x) : |t − β| ≤ a, |x − ζ| ≤ 1

2
b}.

Since (tn, x(tn)) → (β, ζ), we can choose n large enough so that (tn, x(tn)) ∈ R∗ and
|tn − tn+1| < b

2M
. For tn ≤ t ≤ tn+1, we claim that (t, x(t)) ∈ R. If t∗ is the first time
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that (t, x(t)) leaves R and remains in Γ, then |x(t∗) − ζ| > b. On the other hand,
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b
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Therefore, (t, x(t)) ∈ R for all t ≥ tn. Now

|x(t) − ζ| ≤ |x(t) − x(tn)| + |x(tn) − ζ| ≤
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+ |x(tn) − ζ|

≤ M |t − tn| + |x(tn) − ζ|,

and so x(t) → ζ as t → β. This completes the proof of the theorem.

Remark 2.1. In the applications, the region D oftenb is given as D = lR × lRd. Let
Br(0) = {x : |x| < r}. Suppose that we have obtained in some way the following
apriori information: if ξ ∈ Br(0), then there is an r1 < r such that the solution
x(t, 0, ξ) ∈ Br1

(0) for all t in its maximal interval of existence. For any fixed T > 0,
let Dr = (−1, T )×Br(0). The continuation theorem implies that x(t, 0, ξ) → ∂Dr as
t → T . Since r1 < r, we conclude that limt→T x(t, 0, ξ) exists and belongs to Br(0).
Thus, the solution can be extended beyond T and must exist on [0,∞).

As an example, consider ẋ = −x3. If ξ is given, then the solution must always
satisfy |x(t, 0, ξ)| ≤ |ξ|.

Exercise 2.1. Give an example of a scalar differential equation ẋ = f(t, x) with the
following property: there is a sequence of maximal solutions (xn, In), n = 0, 1, 2, . . . ,

such that In = (−∞,∞), n = 1, 2, . . . , I0 = (−1, 1) and xn(0) → x0(0) as n → ∞.
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