1.2. Continuation of solutions.

It is convenient to let the pair (x, I) denote a solution of the initial value problem (1.2) on the interval I. We say that a solution (y, J) is an extension of (x, I) if $I \subset J$ and $x(t)=y(t)$ on I. We say that (x, I) is a maximal solution of (1.2) if and only if, for any extension (y, J), we have $J=I$. In this case, we refer to I as the maximal interval of existence of the solution of (1.2). If $(x, I), I=(\alpha, \beta)$, is a solution of (1.2) and ∂D denotes the boundary of D, then we say that $(t, x(t))$ approaches the boundary of D, denoted by $(t, x(t)) \rightarrow \partial D$, as $t \rightarrow \alpha$ (resp. β) in I if, for any compact set $K \subset D$, there exists $\epsilon>0$ such that $(t, x(t)) \in D \backslash K$ for all $t \in(\alpha, \alpha+\epsilon)$ (resp. $t \in(\beta-\epsilon, \beta))$. We emphasize that the definition of $(t, x(t))$ approaches the boundary of D implies that the solution must eventually leave any compact set of D.

Theorem 2.1. For any solution $\left(x^{*}, I^{*}\right)$ of (1.2), there exists a maximal solution (x, I) that is an extension of $\left(x^{*}, I^{*}\right)$. The interval I is open, $I=(\alpha, \beta),-\infty \leq$ $\alpha, \beta \leq+\infty$, and $(t, x(t)) \rightarrow \partial D$ as $t \rightarrow$ either end point of I.

Proof. We let $S=\left\{(y, J):(y, J)\right.$ is an extension of $\left.\left(x^{*}, I^{*}\right)\right\}$ and define the partial ordering on S by $\left(y_{1}, J_{1}\right) \leq\left(y_{2}, J_{2}\right)$ if and only if $J_{1} \subset J_{2}$ and $y_{1}(t)=y_{2}(t)$ on J_{1}. It is clear that S is not empty. If S_{0} is a totally ordered subset of S, we define $I=\cup\left\{J:(y, J) \in S_{0}\right\}$ and $x(t)=y(t)$ for all $t \in I$. It follows that (x, I) is an upper bound of S_{0} and is clearly an extension of $\left(x^{*}, I^{*}\right)$. From Zorn's Lemma, we conclude that $\left(x^{*}, I^{*}\right)$ is contained in the maximal solution (x, I).

We prove that I is open by contradiction. Suppose that the end points of I are $\alpha<\beta$. If I contains β and $x(\beta)=\zeta$, then $(\beta, \zeta) \in D$ and the local existence theorem implies that there is a solution y of (1.1) with initial state ζ at time β existing on an interval $J=[\beta-\epsilon, \beta+\epsilon]$ for some $\epsilon>0$. If we define $z(t)=x(t)$ on $I, z(t)=y(t)$ on $(\beta, \beta+\epsilon)$, then $(z, I \cup(\beta, \beta+\epsilon))$ is an extension of (x, I), which contradicts the fact that (x, I) is a maximal solution. The endpoint α is treated in the same way.

We now show that $(t, x(t)) \rightarrow \partial D$ as $t \rightarrow \beta$. It is clear that we only need to consider $\beta<\infty$. If the maximal solution (x, I) does not approach the boundary, then there is a compact set $K \subset D$ and a monotone sequence $\left\{t_{n}\right\}, t_{n} \rightarrow \beta$ as $n \rightarrow \infty$, such that $\left(t_{n}, x\left(t_{n}\right)\right) \in K$ for all n. The compactness of K implies that $\left\{x\left(t_{n}\right)\right\}$ has a convergent subsequence which is again denoted by $\left\{x\left(t_{n}\right)\right\}$. Assume that $x\left(t_{n}\right) \rightarrow \zeta$ as $n \rightarrow \infty$. If we show that $x(t) \rightarrow \zeta$ as $t \rightarrow \beta$, then we can apply Theorem 1.1 to extend the solution to $(\alpha, \beta+\epsilon)$ for some $\epsilon>0$, which contradicts the fact that (x, I) is a maximal solution.

It remains to show that $x(t) \rightarrow \zeta$ as $t \rightarrow \beta$. If \bar{a}, \bar{b} are positive real numbers chosen so that $\Gamma=\{(t, x):|t-\beta| \leq \bar{a},|x-\zeta| \leq \bar{b}\} \subset D$, then we let $M=$ $\sup \{|f(t, x)|:(t, x) \in \Gamma\}$. We choose $0<a \leq \bar{a}, 0<b \leq \bar{b}$ such that $a M \leq b$ and define $R=\{(t, x):|t-\beta| \leq a,|x-\zeta| \leq b\}, R^{*}=\left\{(t, x):|t-\beta| \leq a,|x-\zeta| \leq \frac{1}{2} b\right\}$. Since $\left(t_{n}, x\left(t_{n}\right)\right) \rightarrow(\beta, \zeta)$, we can choose n large enough so that $\left(t_{n}, x\left(t_{n}\right)\right) \in R^{*}$ and $\left|t_{n}-t_{n+1}\right|<\frac{b}{2 M}$. For $t_{n} \leq t \leq t_{n+1}$, we claim that $(t, x(t)) \in R$. If t^{*} is the first time
that $(t, x(t))$ leaves R and remains in Γ, then $\left|x\left(t^{*}\right)-\zeta\right|>b$. On the other hand,

$$
\left|x\left(t^{*}\right)-x\left(t_{n}\right)\right| \leq\left|\int_{t_{n}}^{t^{*}} f(s, x(s)) d s\right| \leq M\left|t^{*}-t_{n}\right| \leq M\left|t_{n+1}-t_{n}\right|<\frac{b}{2}
$$

and

$$
\left|x\left(t^{*}\right)-\zeta\right| \leq\left|x\left(t^{*}\right)-x\left(t_{n}\right)\right|+\left|x\left(t_{n}\right)-\zeta\right|<\frac{b}{2}+\frac{b}{2}=b .
$$

Therefore, $(t, x(t)) \in R$ for all $t \geq t_{n}$. Now

$$
\begin{aligned}
|x(t)-\zeta| \leq\left|x(t)-x\left(t_{n}\right)\right|+\left|x\left(t_{n}\right)-\zeta\right| & \leq\left|\int_{t_{n}}^{t} f(s, x(s)) d s\right|+\left|x\left(t_{n}\right)-\zeta\right| \\
& \leq M\left|t-t_{n}\right|+\left|x\left(t_{n}\right)-\zeta\right|
\end{aligned}
$$

and so $x(t) \rightarrow \zeta$ as $t \rightarrow \beta$. This completes the proof of the theorem.
Remark 2.1. In the applications, the region D oftenb is given as $D=\mathbb{R} \times \mathbb{R}^{d}$. Let $B_{r}(0)=\{x:|x|<r\}$. Suppose that we have obtained in some way the following apriori information: if $\xi \in B_{r}(0)$, then there is an $r_{1}<r$ such that the solution $x(t, 0, \xi) \in B_{r_{1}}(0)$ for all t in its maximal interval of existence. For any fixed $T>0$, let $D_{r}=(-1, T) \times B_{r}(0)$. The continuation theorem implies that $x(t, 0, \xi) \rightarrow \partial D_{r}$ as $t \rightarrow T$. Since $r_{1}<r$, we conclude that $\lim _{t \rightarrow T} x(t, 0, \xi)$ exists and belongs to $B_{r}(0)$. Thus, the solution can be extended beyond T and must exist on $[0, \infty)$.

As an example, consider $\dot{x}=-x^{3}$. If ξ is given, then the solution must always satisfy $|x(t, 0, \xi)| \leq|\xi|$.

Exercise 2.1. Give an example of a scalar differential equation $\dot{x}=f(t, x)$ with the following property: there is a sequence of maximal solutions $\left(x_{n}, I_{n}\right), n=0,1,2, \ldots$, such that $I_{n}=(-\infty, \infty), n=1,2, \ldots, I_{0}=(-1,1)$ and $x_{n}(0) \rightarrow x_{0}(0)$ as $n \rightarrow \infty$.

