
1.4. Differential inequalities.

Let Dr denote the right hand derivative of a function. If ω(t, u) is a scalar
function of the scalars t, u in some open connected set Ω, we say that a function
v(t), a ≤ t < b, is a solution of the differential inequality

(4.1) Dr v(t) ≤ ω(t, v(t))

on [a, b) if v(t) is continuous and has a right hand derivative on [a, b) that satisfies
(4.1).

Theorem 4.1. Let ω ∈ Cr(Ω, lR), r ≥ 1, where Ω ⊂ lR2 is an open connected set.
If u(t) is a solution of the equation

(4.2) u̇ = ω(t, u)

on [a, b] and v is a solution of (4.1) on [a, b) with v(a) ≤ u(a), then v(t) ≤ u(t) for
t ∈ [a, b).

Proof. For any positive integer n, let un(t) designate the solution of the equation

u̇ = ω(t, u) +
1

n

with un(a) = u(a). From Corollary 3.1 and Exercise 3.5, there is an n0 such that
un, for n ≥ n0, is defined on [a, b] and un(t) → u(t) uniformly on [a, b] as n → ∞.

Suppose that v(t) is not ≤ u(t) for a ≤ t < b. Then there exist t1, a < t1 < b, such that
v(t1) > u(t1). Since un(t) → u(t) uniformly on [a, b] as n → ∞, there is an integer n

such that v(t1) > un(t1). Thus, there is a t2 < t1 in (a, b) such that v(t) > un(t) on
t2 < t ≤ t1, v(t2) = un(t2). This implies that

Dr v(t2) ≥ u̇n(t2) = ω(t2, un(t2)) +
1

n

= ω(t2, v(t2)) +
1

n

> ω(t2, v(t2)) ,

which is a contradiction. Consequently, v(t) ≤ u(t) for a ≤ t ≤ b. This proves the
theorem.

Corollary 4.1. Suppose that ω(t, u) satisfies the conditions of Theorem 4.1 and, in
addition, is nondecreasing in u. If u is a solution of (4.2) on [a, b] and v(t) is continuous
and satisfies the integral inequality

(4.3) v(t) ≤ va +

∫ t

a

ω(s, v(s)) ds, a ≤ t ≤ b, va ≤ u(a) ,
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then v(t) ≤ u(t), a ≤ t ≤ b.

Proof. If V (t) is the right hand side of (4.3), then v(t) ≤ V (t) and V̇ (t) ≤
ω(t, V (t)), V (a) = va ≤ u(a). Theorem 4.1 implies that V (t) ≤ u(t) for a ≤ t < b.
Since V (t) is continuous on [a, b], we have V (t) ≤ u(t) for a ≤ t ≤ b, which proves the
corollary.

Remark 4.1. If it not assumed that the function ω(t, u) in Corollary 4.1 is nonde-
creasing in u, then the conclusion in the corollary may not be true. The following
example was supplied by X.-B. Lin. If ω(t, u) = −u and u(0) = −1, then u(t) = −e−t.

If n ≥ 2 is an integer, then v(t) = t
n
− 1 for t ≤ n and v(t) = 0 for t > n is a solution

of the integral inequality (4.3) on [0, ∞).

Corollary 4.2. (The Gronwall Inequality) If α is a real constant, β(t) ≥ 0 and ϕ(t)
are continuous real functions for a ≤ t ≤ b which satisfy

ϕ(t) ≤ α +

∫ t

a

β(s)ϕ(s) ds, a ≤ t ≤ b ,

then

ϕ(t) ≤ αe

∫
t

a

β(s) ds
, a ≤ t ≤ b .

Proof. Apply Corollary 4.2 with va = α, ω(t, u) = β(t)u.

Corollary 4.3. (Generalized Gronwall Inequality) If β(t) ≥ 0, α(t) and ϕ(t) are
continuous real functions for a ≤ t ≤ b which satisfy

ϕ(t) ≤ α(t) +

∫ t

a

β(s)ϕ(s) ds, a ≤ t ≤ b ,

then

ϕ(t) ≤ α(t) +

∫ t

a

β(s)α(s)e

∫
t

s

β(u) du
ds, a ≤ t ≤ b .

If, in addition, α̇(t) is continuous and α̇ ≥ 0, then

ϕ(t) ≤ α(t)e

∫
t

a

β(s) ds
, a ≤ t ≤ b .

Exercise 4.1. Prove Corollary 4.3. Let R(t) =
∫ t

a
β(s)ϕ(s) ds, obtain a differential

inequality for R and find a solution of the inequality. If α̇(t) is continuous, then
integrate by parts.

Exercise 4.2. Consider the linear system of differential equations

ẋ = A(t)x + h(t) ,
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where the d × d matrix A and the d-vector h are continuous on an interval I, finite
or infinite. Prove that the solution of the initial value problem exists on I. Hint: Fix
a closed interval Ī ⊂ I, take τ ∈ Ī, ξ ∈ lRd and let v(t) = |x(t)|. Obtain an integral
inequality for v and use the generalized Gronwall inequality.

Differential inequalities are very convenient for obtaining bounds on the solutions
of vector systems ẋ = f(t, x). The inequality is obtained by differentiating scalar
valued functions V (t, x) along the solutions.

Exercise 4.3. For x, y ∈ lRd, let x · y be the inner product of x and y. Suppose that
f ∈ Cr(lR× lRd, lRd), r ≥ 1, and there exists a continuous function λ ∈ C(lR, lR) such
that x · f(t, x) ≤ −λ(t)x · x for all t. For any τ ∈ lR, ξ ∈ lRd, show that the solution
of the initial value problem exists for all t and satisfies the inequality

|x(t)| ≤ e
−

∫
t

τ

λ(s) ds
|ξ|, t ≥ τ .

Discuss the behavior of the solutions for λ(t) ≥ 0. What happens if
∫ +∞

τ
λ(s) ds =

+∞? Hint: Let V (x) = x · x and find a differential inequality for V (x(t)) along the
solution x(t).

Exercise 4.4. Generalize the previous exercise to the case where x · Bf(t, x) ≤
λ(t)x · x where B is a positive definite symmetric matrix. Hint: Let V (X) = x · Bx.

Exercise 4.5. Suppose that |f(t, x)| ≤ λ(t)|x| for all t, x and
∫ +∞

τ
λ(s) ds < +∞.

Show that each solution of ẋ = f(t, x) approaches a constant as t → ∞. If, in addition,

|f(t, x) − f(t, y)| ≤ λ(t)|x − y|

for all t, x, y, show that there is a one-to-one correspondence between the initial
positions and the limit values of the solution. Interpret the results for the linear
equation ẋ = A(t)x where the norm of the d × d matrix A(t) is bounded by λ(t).

Exercise 4.6. Suppose that a(t) is a continuous scalar function,
∫ +∞

0
|a(s)| ds < ∞.

As in the previous exercise, show that the solutions of the equation ẋ = −x + a(t)x
have the form x(t) = e−ty(t), where y(t) → a constant as t → ∞ and there is a
one-to-one correspondence between the limits of the solutions and the initial position.
Notice that you have shown that, for any constant c, there is a function g(t) → 0 as
t → ∞ such that x(t) = e−t(c + g(t)) is a solution of the differential equation. Hint:
Find the differential equation for y.

Exercise 4.7. Consider the equation ẋ1 = x2, ẋ2 = −x1 + a(t)x1, where a is the
same function as in the previous exercise. Show that the solutions have the form

x1(t) = y1(t) cos t + y2(t) sin t

x2(t) = −y1(t) sin t + y2(t) cos t
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where y(t) = (y1(t), y2(t)) → a constant as t → ∞ and there is a one-to-one correspon-
dence between the limits of the solutions and the initial position. Comment about
how this result relates the solutions to the solutions of the homogeneous equation
ẋ1 = x2, ẋ2 = −x1?
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