1.4. Differential inequalities.

Let D_{r} denote the right hand derivative of a function. If $\omega(t, u)$ is a scalar function of the scalars t, u in some open connected set Ω, we say that a function $v(t), a \leq t<b$, is a solution of the differential inequality

$$
\begin{equation*}
D_{r} v(t) \leq \omega(t, v(t)) \tag{4.1}
\end{equation*}
$$

on $[a, b)$ if $v(t)$ is continuous and has a right hand derivative on $[a, b)$ that satisfies (4.1).

Theorem 4.1. Let $\omega \in C^{r}(\Omega, \mathbb{R}), r \geq 1$, where $\Omega \subset \mathbb{R}^{2}$ is an open connected set. If $u(t)$ is a solution of the equation

$$
\begin{equation*}
\dot{u}=\omega(t, u) \tag{4.2}
\end{equation*}
$$

on $[a, b]$ and v is a solution of (4.1) on $[a, b)$ with $v(a) \leq u(a)$, then $v(t) \leq u(t)$ for $t \in[a, b)$.

Proof. For any positive integer n, let $u_{n}(t)$ designate the solution of the equation

$$
\dot{u}=\omega(t, u)+\frac{1}{n}
$$

with $u_{n}(a)=u(a)$. From Corollary 3.1 and Exercise 3.5, there is an n_{0} such that u_{n}, for $n \geq n_{0}$, is defined on $[a, b]$ and $u_{n}(t) \rightarrow u(t)$ uniformly on $[a, b]$ as $n \rightarrow \infty$. Suppose that $v(t)$ is not $\leq u(t)$ for $a \leq t<b$. Then there exist $t_{1}, a<t_{1}<b$, such that $v\left(t_{1}\right)>u\left(t_{1}\right)$. Since $u_{n}(t) \rightarrow u(t)$ uniformly on $[a, b]$ as $n \rightarrow \infty$, there is an integer n such that $v\left(t_{1}\right)>u_{n}\left(t_{1}\right)$. Thus, there is a $t_{2}<t_{1}$ in (a, b) such that $v(t)>u_{n}(t)$ on $t_{2}<t \leq t_{1}, v\left(t_{2}\right)=u_{n}\left(t_{2}\right)$. This implies that

$$
\begin{aligned}
D_{r} v\left(t_{2}\right) & \geq \dot{u}_{n}\left(t_{2}\right)=\omega\left(t_{2}, u_{n}\left(t_{2}\right)\right)+\frac{1}{n} \\
& =\omega\left(t_{2}, v\left(t_{2}\right)\right)+\frac{1}{n} \\
& >\omega\left(t_{2}, v\left(t_{2}\right)\right)
\end{aligned}
$$

which is a contradiction. Consequently, $v(t) \leq u(t)$ for $a \leq t \leq b$. This proves the theorem.

Corollary 4.1. Suppose that $\omega(t, u)$ satisfies the conditions of Theorem 4.1 and, in addition, is nondecreasing in u. If u is a solution of (4.2) on $[a, b]$ and $v(t)$ is continuous and satisfies the integral inequality

$$
\begin{equation*}
v(t) \leq v_{a}+\int_{a}^{t} \omega(s, v(s)) d s, \quad a \leq t \leq b, \quad v_{a} \leq u(a) \tag{4.3}
\end{equation*}
$$

then $v(t) \leq u(t), a \leq t \leq b$.
Proof. If $V(t)$ is the right hand side of (4.3), then $v(t) \leq V(t)$ and $\dot{V}(t) \leq$ $\omega(t, V(t)), V(a)=v_{a} \leq u(a)$. Theorem 4.1 implies that $V(t) \leq u(t)$ for $a \leq t<b$. Since $V(t)$ is continuous on $[a, b]$, we have $V(t) \leq u(t)$ for $a \leq t \leq b$, which proves the corollary.

Remark 4.1. If it not assumed that the function $\omega(t, u)$ in Corollary 4.1 is nondecreasing in u, then the conclusion in the corollary may not be true. The following example was supplied by X.-B. Lin. If $\omega(t, u)=-u$ and $u(0)=-1$, then $u(t)=-e^{-t}$. If $n \geq 2$ is an integer, then $v(t)=\frac{t}{n}-1$ for $t \leq n$ and $v(t)=0$ for $t>n$ is a solution of the integral inequality (4.3) on $[0, \infty)$.
Corollary 4.2. (The Gronwall Inequality) If α is a real constant, $\beta(t) \geq 0$ and $\varphi(t)$ are continuous real functions for $a \leq t \leq b$ which satisfy

$$
\varphi(t) \leq \alpha+\int_{a}^{t} \beta(s) \varphi(s) d s, \quad a \leq t \leq b
$$

then

$$
\varphi(t) \leq \alpha e^{\int_{a}^{t} \beta(s) d s}, \quad a \leq t \leq b
$$

Proof. Apply Corollary 4.2 with $v_{a}=\alpha, \omega(t, u)=\beta(t) u$.
Corollary 4.3. (Generalized Gronwall Inequality) If $\beta(t) \geq 0, \alpha(t)$ and $\varphi(t)$ are continuous real functions for $a \leq t \leq b$ which satisfy

$$
\varphi(t) \leq \alpha(t)+\int_{a}^{t} \beta(s) \varphi(s) d s, \quad a \leq t \leq b
$$

then

$$
\varphi(t) \leq \alpha(t)+\int_{a}^{t} \beta(s) \alpha(s) e^{\int_{s}^{t} \beta(u) d u} d s, \quad a \leq t \leq b
$$

If, in addition, $\dot{\alpha}(t)$ is continuous and $\dot{\alpha} \geq 0$, then

$$
\varphi(t) \leq \alpha(t) e^{\int_{a}^{t} \beta(s) d s}, \quad a \leq t \leq b
$$

Exercise 4.1. Prove Corollary 4.3. Let $R(t)=\int_{a}^{t} \beta(s) \varphi(s) d s$, obtain a differential inequality for R and find a solution of the inequality. If $\dot{\alpha}(t)$ is continuous, then integrate by parts.

Exercise 4.2. Consider the linear system of differential equations

$$
\dot{x}=A(t) x+h(t),
$$

where the $d \times d$ matrix A and the d-vector h are continuous on an interval I, finite or infinite. Prove that the solution of the initial value problem exists on I. Hint: Fix a closed interval $\bar{I} \subset I$, take $\tau \in \bar{I}, \xi \in \mathbb{R}^{d}$ and let $v(t)=|x(t)|$. Obtain an integral inequality for v and use the generalized Gronwall inequality.

Differential inequalities are very convenient for obtaining bounds on the solutions of vector systems $\dot{x}=f(t, x)$. The inequality is obtained by differentiating scalar valued functions $V(t, x)$ along the solutions.

Exercise 4.3. For $x, y \in \mathbb{R}^{d}$, let $x \cdot y$ be the inner product of x and y. Suppose that $f \in C^{r}\left(\mathbb{R} \times \mathbb{R}^{d}, \mathbb{R}^{d}\right), r \geq 1$, and there exists a continuous function $\lambda \in C(\mathbb{R}, \mathbb{R})$ such that $x \cdot f(t, x) \leq-\lambda(t) x \cdot x$ for all t. For any $\tau \in \mathbb{R}, \xi \in \mathbb{R}^{d}$, show that the solution of the initial value problem exists for all t and satisfies the inequality

$$
|x(t)| \leq e^{-\int_{\tau}^{t} \lambda(s) d s}|\xi|, \quad t \geq \tau
$$

Discuss the behavior of the solutions for $\lambda(t) \geq 0$. What happens if $\int_{\tau}^{+\infty} \lambda(s) d s=$ $+\infty$? Hint: Let $V(x)=x \cdot x$ and find a differential inequality for $V(x(t))$ along the solution $x(t)$.

Exercise 4.4. Generalize the previous exercise to the case where $x \cdot B f(t, x) \leq$ $\lambda(t) x \cdot x$ where B is a positive definite symmetric matrix. Hint: Let $V(X)=x \cdot B x$.

Exercise 4.5. Suppose that $|f(t, x)| \leq \lambda(t)|x|$ for all t, x and $\int_{\tau}^{+\infty} \lambda(s) d s<+\infty$. Show that each solution of $\dot{x}=f(t, x)$ approaches a constant as $t \rightarrow \infty$. If, in addition,

$$
|f(t, x)-f(t, y)| \leq \lambda(t)|x-y|
$$

for all t, x, y, show that there is a one-to-one correspondence between the initial positions and the limit values of the solution. Interpret the results for the linear equation $\dot{x}=A(t) x$ where the norm of the $d \times d$ matrix $A(t)$ is bounded by $\lambda(t)$.

Exercise 4.6. Suppose that $a(t)$ is a continuous scalar function, $\int_{0}^{+\infty}|a(s)| d s<\infty$. As in the previous exercise, show that the solutions of the equation $\dot{x}=-x+a(t) x$ have the form $x(t)=e^{-t} y(t)$, where $y(t) \rightarrow$ a constant as $t \rightarrow \infty$ and there is a one-to-one correspondence between the limits of the solutions and the initial position. Notice that you have shown that, for any constant c, there is a function $g(t) \rightarrow 0$ as $t \rightarrow \infty$ such that $x(t)=e^{-t}(c+g(t))$ is a solution of the differential equation. Hint: Find the differential equation for y.

Exercise 4.7. Consider the equation $\dot{x}_{1}=x_{2}, \dot{x}_{2}=-x_{1}+a(t) x_{1}$, where a is the same function as in the previous exercise. Show that the solutions have the form

$$
\begin{aligned}
& x_{1}(t)=y_{1}(t) \cos t+y_{2}(t) \sin t \\
& x_{2}(t)=-y_{1}(t) \sin t+y_{2}(t) \cos t
\end{aligned}
$$

where $y(t)=\left(y_{1}(t), y_{2}(t)\right) \rightarrow$ a constant as $t \rightarrow \infty$ and there is a one-to-one correspondence between the limits of the solutions and the initial position. Comment about how this result relates the solutions to the solutions of the homogeneous equation $\dot{x}_{1}=x_{2}, \dot{x}_{2}=-x_{1}$?

