1.3. Uniqueness, continuous dependence and differentiability.

In this section, we prove uniqueness of the solution of the initial value problem
(1.2) under the hypotheses that f is locally Lipschitzian and give also some differen-
tiability results when the function f satisfies additional regularity properties.

A function f € C(D, IRd) is said to be locally Lipschitzian with respect to x if,
for any closed bounded set U C D, there is a constant k = ki (called the Lipschitz
constant on U) such that |f(t, ) — f(¢, y)| < k|z — y| for (¢, x), (¢, y) € U. We let
Cr(D, R%) be the set of functions which have continuous derivatives with respect to
z up through order r and let C7*(D, R%) be those functions in C”(D, R%) which
have r*" derivatives locally Lipschitzian.

Theorem 3.1. If f € C7(D, R%),r > 1, then, for any (1, &) € D, there is a unique
solution x(t, T, £) of the initial value problem (1.2) and x(t, 7, £) is continuous in
(t, T, &) together with first derivatives with respect to t,7 and all derivatives with
respect to & up through order r. If f € C(D, R%), r > 0, then, for any (r, £) € D,
there is a unique solution z(t, T, £) of the initial value problem (1.2) and x(t, T, §) is
continuous in (t, T, §) together with all derivatives with respect to £ up through order
r with the r*" derivatives locally Lipschitzian.

Proof. For any given closed bounded subset U of D, we choose positive constants
@, 3 so that the rectangle R = R(7, £) in the proof of Theorem 1.1 belongs to D
for all (7, &) € U and so that V.= U{ R(7, §) : (7, &) € U} has its closure in D.If
M =sup{|f(t, x)| : (t, z) € V' }, and k is the Lipschitz constant of f with respect to
x or V, then we choose positive constants o < @&, # < 3 so that Ma < 3, ka < 1. If
I'={pecC%—a,a],R?):p0)=0,|pt)] < fortec[—a, a]}, then we define the
map T : T — C%([—a, o, R?) by the relation

t+7
(3.1) T(t) = / f(s, (s — ) +€) ds.

The fixed points of T in T' coincide with the solutions x(¢, 7, §) = p(t — 7) + £ of the
initial value problem (1.2) on [T — o, T + @.

We now show that T is a uniform contraction on I" (see Section A.2). We observe
first that T is a closed subset of the Banach space C°([—a, o], R%). Since Tp(0) = 0
and an easy computation shows that |T'o(t)| < Ma < ( for t € [—a, a, we have
IT C I'. Also, [To(t) — T(t)| < kasupe(_q,q) for t € [—a, a]. Since ka < 1, this
shows that 7" is a uniform contraction on I' and the conclusion in the theorem follows
from Theorem A.2.1.

Corollary 3.1. Suppose that f € C71(D,R%),r > 0. If z(t, 70, &) is a solution of
(1.2) defined on the maximal interval (g, By), then, for any closed interval [a,b] C
(v, Bo), thereisad = §([a, b], 10, o) such that, for any (1, &) with |T—7o| < d, |§—Eo| <
J, the solution x(tt, &) of (1.2) exists on [a, b] and z(t, T,§) — x(t19, &) uniformly on
[a,b] as (7,€) — (70, &o)-



Proof. This is a consequence of Theorem 3.1 since z(t, 7, ) is uniformly continuous
on compact sets.

Since the contraction principle was used in the proof of Theorem 3.1, we can
obtain the solution by successive approximations

) =T pn=01...

where T is defined in (3.1) and ©©) is any function belonging to I'. The simplest
choice for ¢(©) is the zero function. If we return to the original variable z, this class
of successive approximations is given by

20 — 3 21 j’ﬂw(n), n=0,1...

3.2 ~ t
(32) Tx(t) = 5—1—/ f(s, x(s))ds.

Exercise 3.1. (Successive approzimations converge) Prove directly that the succes-
sive approximations (3.2) converge for Ma < (3, where M, a, 3 are the constants
chosen in the proof of Theorem 3.1.

Exercise 3.2. (Approximations and Taylor series) Apply the successive approxima-
tions to the scalar initial value problem & = —z, x(0) = 1, to obtain
tn

™) =1 —td ()"

)

which is the truncated Taylor expansion for e~t.

We often need the formulas for the derivatives of z(t, T, £) with respect to 7, .
It is easy to verify that each column of the d x d matrix

dx(t, 7, &)  Ox(r, 7, )
9 o€

= I, the identity

satisfies the linear variational equation

oft, =t 7, 8)

(3.3) y= P

We also can show that

dx(t, 7, §) _ _ Ox(t, 7, §)

(3.4) o = SR ).




In fact, from the uniqueness of the solution, for any real h sufficiently small, we have
x(t, 7, &) = x(t, 7+ h, (T + h, 7, £)) since they both satisfy the same differential
equation and are equal at ¢ = 7 + h. Therefore,

IL'(t, T+ h’v 5) _x(tv T, 5)
=az(t, 7+ h, &) —x(t, 7+ h, x(t+h, 7,8)).
Dividing by h and taking the limit as h — 0 yields (3.4).
The linear variational arises also in the following important way. If ¢(¢) is a
solution of (1.1) and we are interested in the behavior of the solutions of (1.1) in a
neighborhood of this given solution, then the transformation x = y+1(t) yields a new

differential equation for which y = 0 is a solution. The linear terms in the expansion
of the vector field about y = 0 gives the linear variational equation.

Theorem 3.2. (Analyticity in initial data) If f : € — €7 is an analytic function,
then the solution z(t, 0, ) is analytic in £.

Exercise 3.3. Prove Theorem 3.2.

Theorem 3.3. (Regularity in time) If f € C™(D, R?), r > 1, then the solution
x(t, 7, &) of the initial value problem (1.2) is C" in all of its arguments.

Exercise 3.4. Prove Theorem 3.3. Hint: Let ¢ = 1 and consider the initial value
problem for z = (z, t).

Theorem 3.4. (Dependence on parameters) For the equation
= f(x, \)
where f € CT(]Rd X ]Rk), r > 1, the solution x(t, &, \), (0, &, \) = &, is a C"-

function of its arguments. Furthermore, for any p € R”, the function %x(t, E, AN
is a solution of the initial value problem

s= L flalt € X), Nz + 2 falt € N, N
2(0)=0.

Exercise 3.5. Prove Theorem 3.4. Hint: Put A = 0 and consider the differential
equation for z = (x, \).






