
1.3. Uniqueness, continuous dependence and differentiability.

In this section, we prove uniqueness of the solution of the initial value problem
(1.2) under the hypotheses that f is locally Lipschitzian and give also some differen-
tiability results when the function f satisfies additional regularity properties.

A function f ∈ C0(D, lRd) is said to be locally Lipschitzian with respect to x if,
for any closed bounded set U ⊂ D, there is a constant k = kU (called the Lipschitz

constant on U) such that |f(t, x) − f(t, y)| ≤ k|x − y| for (t, x), (t, y) ∈ U. We let
Cr

x(D, lRd) be the set of functions which have continuous derivatives with respect to
x up through order r and let Cr, 1

x (D, lRd) be those functions in Cr
x(D, lRd) which

have rth derivatives locally Lipschitzian.

Theorem 3.1. If f ∈ Cr
x(D, lRd), r ≥ 1, then, for any (τ, ξ) ∈ D, there is a unique

solution x(t, τ, ξ) of the initial value problem (1.2) and x(t, τ, ξ) is continuous in
(t, τ, ξ) together with first derivatives with respect to t, τ and all derivatives with
respect to ξ up through order r. If f ∈ Cr, 1

x (D, lRd), r ≥ 0, then, for any (τ, ξ) ∈ D,

there is a unique solution x(t, τ, ξ) of the initial value problem (1.2) and x(t, τ, ξ) is
continuous in (t, τ, ξ) together with all derivatives with respect to ξ up through order
r with the rth derivatives locally Lipschitzian.

Proof. For any given closed bounded subset U of D, we choose positive constants
ᾱ, β̄ so that the rectangle R = R(τ, ξ) in the proof of Theorem 1.1 belongs to D

for all (τ, ξ) ∈ U and so that V = ∪{R(τ, ξ) : (τ, ξ) ∈ U } has its closure in D.If
M = sup{ |f(t, x)| : (t, x) ∈ V }, and k is the Lipschitz constant of f with respect to
x or V, then we choose positive constants α ≤ ᾱ, β ≤ β̄ so that Mα ≤ β, kα < 1. If
Γ = {ϕ ∈ C0([−α, α], lRd) : ϕ(0) = 0, |ϕ(t)| ≤ β for t ∈ [−α, α] }, then we define the
map T : Γ → C0([−α, α], lRd) by the relation

(3.1) Tϕ(t) =

∫ t+τ

τ

f(s, ϕ(s− τ) + ξ) ds .

The fixed points of T in Γ coincide with the solutions x(t, τ, ξ) = ϕ(t− τ) + ξ of the
initial value problem (1.2) on [τ − α, τ + α].

We now show that T is a uniform contraction on Γ (see Section A.2). We observe
first that Γ is a closed subset of the Banach space C0([−α, α], lRd). Since Tϕ(0) = 0
and an easy computation shows that |Tϕ(t)| ≤ Mα ≤ β for t ∈ [−α, α], we have
TΓ ⊂ Γ. Also, |Tϕ(t) − Tψ(t)| ≤ kα sups∈[−α,α] for t ∈ [−α, α]. Since kα < 1, this
shows that T is a uniform contraction on Γ and the conclusion in the theorem follows
from Theorem A.2.1.

Corollary 3.1. Suppose that f ∈ Cr,1
x (D, lRd), r ≥ 0. If x(t, τ0, ξ0) is a solution of

(1.2) defined on the maximal interval (α0, β0), then, for any closed interval [a, b] ⊂
(α0, β0), there is a δ = δ([a, b], τ0, ξ0) such that, for any (τ, ξ) with |τ−τ0| < d, |ξ−ξ0| <
δ, the solution x(tτ, ξ) of (1.2) exists on [a, b] and x(t, τ, ξ) → x(tτ0, ξ0) uniformly on
[a, b] as (τ, ξ) → (τ0, ξ0).
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Proof. This is a consequence of Theorem 3.1 since x(t, τ, ξ) is uniformly continuous
on compact sets.

Since the contraction principle was used in the proof of Theorem 3.1, we can
obtain the solution by successive approximations

ϕ(n+1) = Tϕ(n), n = 0, 1 . . .

where T is defined in (3.1) and ϕ(0) is any function belonging to Γ. The simplest
choice for ϕ(0) is the zero function. If we return to the original variable x, this class
of successive approximations is given by

(3.2)

x(0) = ξ, x(n+1) = T̃ x(n), n = 0, 1 . . .

T̃ x(t) = ξ +

∫ t

τ

f(s, x(s)) ds .

Exercise 3.1. (Successive approximations converge) Prove directly that the succes-
sive approximations (3.2) converge for Mα ≤ β, where M, α, β are the constants
chosen in the proof of Theorem 3.1.

Exercise 3.2. (Approximations and Taylor series) Apply the successive approxima-
tions to the scalar initial value problem ẋ = −x, x(0) = 1, to obtain

x(n)(t) = 1 − t+ . . .+ (−1)n t
n

n!
,

which is the truncated Taylor expansion for e−t.

We often need the formulas for the derivatives of x(t, τ, ξ) with respect to τ, ξ.
It is easy to verify that each column of the d× d matrix

∂x(t, τ, ξ)

∂ξ
,

∂x(τ, τ, ξ)

∂ξ
= I, the identity

satisfies the linear variational equation

(3.3) ẏ =
∂f(t, x(t, τ, ξ))

∂x
y .

We also can show that

(3.4)
∂x(t, τ, ξ)

∂τ
= −

∂x(t, τ, ξ)

∂ξ
f(τ, ξ) .
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In fact, from the uniqueness of the solution, for any real h sufficiently small, we have
x(t, τ, ξ) = x(t, τ + h, x(τ + h, τ, ξ)) since they both satisfy the same differential
equation and are equal at t = τ + h. Therefore,

x(t, τ + h, ξ) − x(t, τ, ξ)

= x(t, τ + h, ξ) − x(t, τ + h, x(τ + h, τ, ξ)) .

Dividing by h and taking the limit as h→ 0 yields (3.4).
The linear variational arises also in the following important way. If ψ(t) is a

solution of (1.1) and we are interested in the behavior of the solutions of (1.1) in a
neighborhood of this given solution, then the transformation x = y+ψ(t) yields a new
differential equation for which y = 0 is a solution. The linear terms in the expansion
of the vector field about y = 0 gives the linear variational equation.

Theorem 3.2. (Analyticity in initial data) If f : Cl d → Cl d is an analytic function,
then the solution x(t, 0, ξ) is analytic in ξ.

Exercise 3.3. Prove Theorem 3.2.

Theorem 3.3. (Regularity in time) If f ∈ Cr(D, lRd), r ≥ 1, then the solution
x(t, τ, ξ) of the initial value problem (1.2) is Cr in all of its arguments.

Exercise 3.4. Prove Theorem 3.3. Hint: Let ṫ = 1 and consider the initial value
problem for z = (x, t).

Theorem 3.4. (Dependence on parameters) For the equation

ẋ = f(x, λ)

where f ∈ Cr(lRd × lRk), r ≥ 1, the solution x(t, ξ, λ), x(0, ξ, λ) = ξ, is a Cr-
function of its arguments. Furthermore, for any µ ∈ lRk, the function ∂

∂λ
x(t, ξ, λ)µ

is a solution of the initial value problem

ż =
∂

∂x
f(x(t, ξ, λ), λ)z +

∂

∂λ
f(x(t, ξ, λ), λ)µ

z(0) = 0 .

Exercise 3.5. Prove Theorem 3.4. Hint: Put λ̇ = 0 and consider the differential
equation for z = (x, λ).
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