
Chapter 1

Linear Equations



Line, Plane, Space, . . .

Recall that R denotes the collection of all real numbers, i.e. the number line.
It contains numbers like 0,−1, π, 3

2
, . . .

Definition
Let n be a positive whole number. We define

Rn = all ordered n-tuples of real numbers (x1, x2, x3, . . . , xn).

Example

When n = 1, we just get R back: R1 = R. Geometrically, this is the number
line.

−3 −2 −1 0 1 2 3



Line, Plane, Space, . . .
Continued

Example

When n = 2, we often think of R2 as the xy-plane or simply the plane. This is
because every point on the plane can be represented by an ordered pair of real
numbers, namely, its x- and y -coordinates.

(1, 2)

(0,−3)

We can use the elements of R2 to label points on the plane, but R2 is not
defined to be the xy -plane!



Line, Plane, Space, . . .
Continued

Example

When n = 3, we can think of R3 as the space we (appear to) live in. This is
because every point in space can be represented by an ordered triple of real
numbers, namely, its x-, y -, and z-coordinates.

(1,−1, 3)

(−2, 2, 2)

Again, we can use the elements of R3 to label points in space, but R3 is not
defined to be space!



Line, Plane, Space, . . .
Continued

Example

All colors you can see can be described by three quantities: the amount of red,
green, and blue light in that color. So we could also think of R3 as the space of
all colors:

R3 = all colors (r , g , b).

red

b
lu

e

green

Again, we can use the elements of R3 to label the colors, but R3 is not defined
to be the space of all colors!



Line, Plane, Space, . . .
Continued

So what is R4? or R5? or Rn?

. . . go back to the definition: ordered n-tuples of real numbers

(x1, x2, x3, . . . , xn).

They’re still “geometric” spaces, in the sense that our intuition for R2 and R3

sometimes extends to Rn, but they’re harder to visualize.

We could use R4 to label the amount of traffic (x , y , z ,w) passing through four
streets.

x

y

z

w

We’ll make definitions and state theorems that apply to any Rn, but we’ll only
draw pictures for R2 and R3.



Section 1.1

Systems of Linear Equations



One Linear Equation

What does the solution set of a linear equation look like?

x + y = 1 a line in the plane: y = 1 − x
This is called the implicit equation of the line.

We can write the same line in parametric form
in R2:

(x , y) = (t, 1 − t) t in R.

This means that every point on the line has the
form (t, 1 − t) for some real number t.

t = 0

t = 1

t = −1

Aside
What is a line? A ray that is straight and infinite in both directions.



One Linear Equation
Continued

What does the solution set of a linear equation look like?

x + y + z = 1 a plane in space:
This is the implicit equation of the plane. x

y

z

(t, w) = (1,−1)

(t, w) = (2, 2)

(t, w) = (−1, 1)

Does this plane have a parametric form?

(x , y , z) = (t, w , 1 − t − w) t,w in R.

Note you need two parameters t and w .

Aside
What is a plane? Intuitively, we think of a plane as a flat sheet of paper that’s
infinite in all directions. But (as we see on the next slide) this generalizes to
something more!



One Linear Equation
Continued

What does the solution set of a linear equation look like?

x + y + z + w = 1 a “3-plane” in “4-space”. . . [not pictured here]



Systems of Linear Equations

What does the solution set of a system of more than one linear equation look
like?

x − 3y = −3

2x + y = 8

. . . is the intersection of two
lines, which is a point in this
case.

In general it’s an intersection of lines, planes, etc.



Kinds of Solution Sets

In what other ways can two lines intersect?

x − 3y = −3

x − 3y = 3

has no solution: the lines are
parallel.

A system of equations with no solutions is called inconsistent.



Kinds of Solution Sets

In what other ways can two lines intersect?

x − 3y = −3

2x − 6y = −6

has infinitely many solutions:
they are the same line.

Note that multiplying an equation by a nonzero number gives the same
solution set. In other words, they are equivalent (systems of) equations.



Solving Systems of Equations

Example

Solve the system of equations

x + 2y + 3z = 6

2x − 3y + 2z = 14

3x + y − z = −2

This is the kind of problem we’ll talk about for the first half of the course.

I A solution is a list of numbers x , y , z , . . .
that make all of the equations true.

I The solution set is the collection of all
solutions.

I Solving the system means finding the
solution set.

What is a systematic way to solve a system of equations?



Solving Systems of Equations

Example

Solve the system of equations

x + 2y + 3z = 6

2x − 3y + 2z = 14

3x + y − z = −2

What strategies do you know?

I Substitution

I Elimination

Both are perfectly valid, but only elimination scales well to large numbers of
equations.



Solving Systems of Equations

Example

Solve the system of equations

x + 2y + 3z = 6

2x − 3y + 2z = 14

3x + y − z = −2

Elimination method: in what ways can you manipulate the equations?

I Multiply an equation by a nonzero number. (scale)

I Add a multiple of one equation to another. (replacement)

I Swap two equations. (swap)



Solving Systems of Equations

Example

Solve the system of equations

x + 2y + 3z = 6

2x − 3y + 2z = 14

3x + y − z = −2

Multiply first by −3 −3x − 6y − 9z = −18

2x − 3y + 2z = 14

3x + y − z = −2

Add first to third
−3x − 6y − 9z = −18

2x − 3y + 2z = 14

−5y − 10z = −20

Now I’ve eliminated x from the last equation!

. . . but there’s a long way to go still. Can we make our lives easier?



Solving Systems of Equations
Better notation

It sure is a pain to have to write x , y , z , and = over and over again.

Matrix notation: write just the numbers, in a box, instead!

x + 2y + 3z = 6

2x − 3y + 2z = 14

3x + y − z = −2

becomes

 1 2 3 6
2 −3 2 14
3 1 −1 −2


This is called an (augmented) matrix. Our equation manipulations become
elementary row operations:

I Multiply all entries in a row by a nonzero number. (scale)

I Add a multiple of each entry of one row to the corresponding entry in
another. (row replacement)

I Swap two rows. (swap)



Row Operations

Example

Solve the system of equations

x + 2y + 3z = 6

2x − 3y + 2z = 14

3x + y − z = −2

Start:  1 2 3 6
2 −3 2 14
3 1 −1 −2


Goal: we want our elimination method to eventually produce a system of
equations like

x = A

y = B

z = C

or in matrix form,

 1 0 0 A
0 1 0 B
0 0 1 C


So we need to do row operations that make the start matrix look like the end
one.

Strategy: fiddle with it so we only have ones and zeros.



Row Operations
Continued 1 2 3 6

2 −3 2 14
3 1 −1 −2


We want these to be zero.

So we subract multiples of the first row.

R2 = R2 − 2R1

 1 2 3 6
0 −7 −4 2
3 1 −1 −2


R3 = R3 − 3R1

 1 2 3 6
0 −7 −4 2
0 −5 −10 −20


 1 2 3 6

0 − 7 −4 2
0 −5 −10 −20


We want these to be zero.

It would be nice if this were a 1.
We could divide by −7, but that

would produce ugly fractions.

Let’s swap the last two rows first.

R2 ←→ R3

 1 2 3 6
0 −5 −10 −20
0 −7 −4 2


R2 = R2 ÷−5

 1 2 3 6
0 1 2 4
0 −7 −4 2


R1 = R1 − 2R2

 1 0 −1 −2
0 1 2 4
0 −7 −4 2


R3 = R3 + 7R2

 1 0 −1 −2
0 1 2 4
0 0 10 30





Row Operations
Continued 1 0 −1 −2

0 1 2 4
0 0 10 30


We want these to be zero.

Let’s make this a 1 first.

R3 = R3 ÷ 10
 1 0 −1 −2

0 1 2 4
0 0 1 3


R1 = R1 + R3

 1 0 0 1
0 1 2 4
0 0 1 3


R2 = R2 − 2R3

 1 0 0 1
0 1 0 −2
0 0 1 3


translates into

x = 1

y = −2

z = 3
Success!

Check:

x + 2y + 3z = 6

2x − 3y + 2z = 14

3x + y − z = −2

substitute solution
1 + 2 · (−2) + 3 · 3 = 6

2 · 1 − 3 · (−2) + 2 · 3 = 14

3 · 1 + (−2) − 3 = −2
"



Row Equivalence

The process of doing row operations to a matrix does
not change the solution set of the corresponding linear
equations!

Important

Definition
Two matrices are called row equivalent if one can be obtained from the other
by doing some number of elementary row operations.

So the linear equations of row-equivalent matrices have the same solution set.



A Bad Example

Example

Solve the system of equations

x + y = 2

3x + 4y = 5

4x + 5y = 9

Let’s try doing row operations:

 1 1 2
3 4 5
4 5 9

First clear these by
subtracting multiples

of the first row.

R2 = R2 − 3R1

 1 1 2
0 1 −1
4 5 9


R3 = R3 − 4R1

 1 1 2
0 1 −1
0 1 1


 1 1 2

0 1 −1
0 1 1

Now clear this by
subtracting

the second row.

R3 = R3 − R2

 1 1 2
0 1 −1
0 0 2





A Bad Example
Continued

 1 1 2
0 1 −1
0 0 2

 translates into
x + y = 2

y = −1

0 = 2

In other words, the original equations

x + y = 2

3x + 4y = 5

4x + 5y = 9

have the same solutions as

x + y = 2

y = −1

0 = 2

But the latter system obviously has no solutions (there is no way to make them
all true), so our original system has no solutions either.

Definition
A system of equations is called inconsistent if it has no solution. It is
consistent otherwise.


