Math 1553 Worksheet: Lines and planes in \mathbb{R}^{n}, §1.1, §1.2

Solutions

1. For each equation, determine whether the equation is linear or non-linear, and circle your answer.
$\begin{array}{ll}\text { a) } 3 x_{1}+\sqrt{x_{2}}=4 \quad \text { Linear } & \text { Not linear } \\ \text { b) } e^{\pi} x+\ln (13) y=\sqrt{2}-z & \text { Linear } \quad \text { Not linear }\end{array}$

Solution.

a) Not linear. The $\sqrt{x_{2}}$ term makes it non-linear.
b) Linear. Note e^{π} and $\sqrt{2}$ are just real numbers. Don't be misled by the appearance of the natural logarithm: $\ln (13)$ is just the coefficient for y.
If the second term had been $\ln (13 y)$ instead of $\ln (13) y$, then y would have been inside the logarithm and the equation would have been non-linear.
2. Consider the following three planes, where we use (x, y, z) to denote points in \mathbf{R}^{3} :

$$
\begin{gathered}
2 x+4 y+4 z=1 \\
2 x+5 y+2 z=-1 \\
y+3 z=8 .
\end{gathered}
$$

Find all points where the planes intersect. In other words, find all solutions to the system of three linear equations given above.

Solution.

We can isolate z in the third equation using algebra, but it is probably best to do using an augmented matrix and elementary row operations.
$\left(\begin{array}{lll|c}2 & 4 & 4 & 1 \\ 2 & 5 & 2 & -1 \\ 0 & 1 & 3 & 8\end{array}\right) \xrightarrow{R_{2}=R_{2}-R_{1}}\left(\begin{array}{ccc|c}2 & 4 & 4 & 1 \\ 0 & 1 & -2 & -2 \\ 0 & 1 & 3 & 8\end{array}\right) \xrightarrow{R_{3}=R_{3}-R_{2}}\left(\begin{array}{ccc|c}2 & 4 & 4 & 1 \\ 0 & 1 & -2 & -2 \\ 0 & 0 & 5 & 10\end{array}\right)$.
The last line is $5 z=10$, so $z=2$. From here, we can back-substitute or continue doing row operations to finish. Below, we give solutions using each method.
Using Substitution: The second row gives $y-2 z=-2$, so $y-2(2)=-2$ so $y=2$.
The first equation is $2 x+4(2)+4(2)=1$, so $2 x=-15$, thus $x=-\frac{15}{2}$.
We have found that the planes intersect at the point $\left(-\frac{15}{2}, 2,2\right)$.

Using more row operations: We eliminate the nonzero terms above the diagonal on the left-hand side of the augmented matrix.

$$
\begin{gathered}
\left(\begin{array}{ccc|c}
2 & 4 & 4 & 1 \\
0 & 1 & -2 & -2 \\
0 & 0 & 5 & 10
\end{array}\right) \xrightarrow{R_{3}=\frac{R_{3}}{5}}\left(\begin{array}{ccc|c}
2 & 4 & 4 & 1 \\
0 & 1 & -2 & -2 \\
0 & 0 & 1 & 2
\end{array}\right) \xrightarrow{R_{2}=R_{2}+2 R_{3}}\left(\begin{array}{lll|l}
2 & 4 & 4 & 1 \\
0 & 1 & 0 & 2 \\
0 & 0 & 1 & 2
\end{array}\right) \xrightarrow{R_{1}=R_{1}-4 R_{3}}\left(\begin{array}{ccc|c}
2 & 4 & 0 & -7 \\
0 & 1 & 0 & 2 \\
0 & 0 & 1 & 2
\end{array}\right) \\
\xrightarrow{R_{1}=R_{1}-4 R_{2}}\left(\begin{array}{ccc|c}
2 & 0 & 0 & -15 \\
0 & 1 & 0 & 2 \\
0 & 0 & 1 & 2
\end{array}\right) \xrightarrow{R_{1}=\frac{R_{1}}{2}}\left(\begin{array}{lll|c}
1 & 0 & 0 & -15 / 2 \\
0 & 1 & 0 & 2 \\
0 & 0 & 1 & 2
\end{array}\right) .
\end{gathered}
$$

This final augmented matrix says $x=-\frac{15}{2}, y=2, z=2$.
3. For each of the following, answer true or false. Justify your answer.
a) Every system of linear equations has at least one solution.
b) There is a system of linear equations that has exactly 5 solutions.

Solution.

a) False. For example, the system

$$
\begin{gathered}
x+y=5 \\
x+y=1 .
\end{gathered}
$$

b) False. There are only three possibilities: no solutions, exactly one solution, or infinitely many solutions. In section 1.2 , we will see why.
4. a) Which of the following matrices are in row echelon form? Which are in reduced row echelon form?
b) Which entries are the pivots? Which are the pivot columns?

$$
\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1
\end{array}\right) \quad\left(\begin{array}{lllll}
1 & 1 & 0 & 1 & 1 \\
0 & 2 & 0 & 2 & 2 \\
0 & 0 & 0 & 3 & 3 \\
0 & 0 & 0 & 0 & 4
\end{array}\right)
$$

Solution.

The first is in reduced row echelon form; the second is in row echelon form. The pivots are in red; the other entries in the pivot columns are in blue.

