Math 1553 Worksheet: More lines, planes, §1.1, and §1.2, Spring 2018

Solutions

1. Find all values of h so that the lines $x+h y=-5$ and $2 x-8 y=6$ do not intersect.

Solution.

We can use standard algebra, row operations, or geometric intuition.
Using standard algebra: Let's see what happens when the lines do intersect. In that case, there is a point (x, y) where

$$
\begin{aligned}
& x+h y=-5 \\
& 2 x-8 y=6
\end{aligned}
$$

Subtracting twice the first equation from the second equation gives us

$$
\begin{gathered}
x+h y=-5 \\
0+(-8-2 h) y=16
\end{gathered}
$$

If $-8-2 h=0$ (so $h=-4$), then the second line is $0 \cdot y=16$, which is impossible. In other words, if $h=-4$ then we cannot find a solution to the system of two equations, so the two lines do not intersect.

On the other hand, if $h \neq-4$, then we can solve for y above:

$$
(-8-2 h) y=16 \quad y=\frac{16}{-8-2 h} \quad y=\frac{8}{-4-h}
$$

We can now substitute this value of y into the first equation to find x :

$$
x+h y=-5 \quad x+h \cdot \frac{8}{-4-h}=-5 \quad x=-5-\frac{8 h}{-4-h} .
$$

Therefore, the lines fail to intersect if and only if $h=-4$.
Using row operations: Like the previous technique, let's see what happens if the lines intersect. We put the equations into augmented matrix form and use row operations.

$$
\left[\begin{array}{cc|c}
1 & h & -5 \\
2 & -8 & 6
\end{array}\right] \xrightarrow{R_{2}=R_{2}-2 R_{1}}\left[\begin{array}{cc|c}
1 & h & -5 \\
0 & -8-2 h & 16
\end{array}\right] .
$$

If $-8-2 h=0$ (so $h=-4$), then the second equation is $0=16$, so our system has no solutions. In other words, the lines do not intersect.

If $h \neq-4$, then the second equation is $(-8-2 h) y=16$, so $y=\frac{16}{-8-2 h}=\frac{8}{-4-h}$, and $x=-5-h y=-5-\frac{8 h}{-4-h}$, so the lines intersect at $\left(-5-\frac{8 h}{-4-h}, \frac{8}{-4-h}\right)$.
Therefore, our answer is $h=-4$.

Using intuition from geometry: Two non-identical lines in the $x y$-plane intersect if and only if they are not parallel. The second line is $y=\frac{1}{4} x-\frac{3}{4}$, so its slope is $\frac{1}{4}$. If $h \neq 0$, then the first line is $y=-\frac{1}{h} x-\frac{5}{h}$, so the lines are parallel when $-\frac{1}{h}=\frac{1}{4}$, which means $h=-4$. You can check that when $h=-4$ the lines aren't identical. (And if $h=0$ then the first line is vertical so it isn't parallel to the second).
2. a) Which of the following matrices are in row echelon form? Which are in reduced row echelon form?
b) Which entries are the pivots? Which are the pivot columns?

$$
\left(\begin{array}{rrr|r}
1 & 0 & 1 & 0 \\
0 & 1 & -3 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \quad\left(\begin{array}{llll}
1 & 4 & 0 & 1 \\
0 & 0 & 1 & 2 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Solution.

Both matrices are in reduced row echelon form. The pivots are in red; the other entries in the pivot columns are in blue.
3. Suppose that each augmented matrix below represents a linear system in the variables x, y, and z (with the last column being after the $=\operatorname{sign}$). Which of the systems are consistent? Which have a unique solution?

Solution.

$$
\begin{aligned}
& \text { (a) }\left(\begin{array}{lll|l}
1 & 3 & 5 & 7 \\
3 & 5 & 7 & 9 \\
5 & 7 & 9 & 1
\end{array}\right) \quad \begin{array}{l}
R_{2}=R_{2}-3 R_{1} \\
\text { mamamami }
\end{array}\left(\begin{array}{rrr|r}
1 & 3 & 5 & 7 \\
0 & -4 & -8 & -12 \\
5 & 7 & 9 & 1
\end{array}\right) \\
& \underset{R_{3}=R_{3}-5 R_{1}}{R_{1}}\left(\begin{array}{rrr|r}
1 & 3 & 5 & 7 \\
0 & -4 & -8 & -12 \\
0 & -8 & -16 & -34
\end{array}\right) \\
& \underset{\text {, }}{R_{2}=R_{2} \div-4}\left(\begin{array}{rrr|r}
1 & 3 & 5 & 7 \\
0 & 1 & 2 & 3 \\
0 & -8 & -16 & -34
\end{array}\right) \\
& \underset{R_{3}=R_{3}+8 R_{2}}{R_{3}}\left(\begin{array}{rrr|r}
1 & 3 & 5 & 7 \\
0 & 1 & 2 & 3 \\
0 & 0 & 0 & -10
\end{array}\right)
\end{aligned}
$$

The bottom row says $0=-10$, which is preposterous. Therefore, the system is inconsistent (it has no solutions).

$$
\begin{aligned}
& \text { (b) }\left(\begin{array}{rrr|r}
3 & -4 & 2 & 0 \\
-8 & 12 & -4 & 0 \\
-6 & 8 & -1 & 0
\end{array}\right) \quad \begin{array}{l}
R_{2}=R_{2}+3 R_{1}
\end{array}\left(\begin{array}{rrr|r}
3 & -4 & 2 & 0 \\
1 & 0 & 2 & 0 \\
-6 & 8 & -1 & 0
\end{array}\right) \\
& \underset{\sim}{R_{1}} \longleftrightarrow R_{2}\left(\begin{array}{rrr|r}
1 & 0 & 2 & 0 \\
3 & -4 & 2 & 0 \\
-6 & 8 & -1 & 0
\end{array}\right) \\
& \underset{2}{R_{2}=R_{2}-3 R_{1}}\left(\begin{array}{rrr|r}
1 & 0 & 2 & 0 \\
0 & -4 & -4 & 0 \\
-6 & 8 & -1 & 0
\end{array}\right) \\
& \underset{R_{3}=R_{3}+6 R_{1}}{R_{1}}\left(\begin{array}{rrr|r}
1 & 0 & 2 & 0 \\
0 & -4 & -4 & 0 \\
0 & 8 & 11 & 0
\end{array}\right) \\
& \xrightarrow[R_{2}=R_{2} \div-4]{R_{2}}\left(\begin{array}{rrr|r}
1 & 0 & 2 & 0 \\
0 & 1 & 1 & 0 \\
0 & 8 & 11 & 0
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \xrightarrow{R_{3}=R_{3} \div 3}\left(\begin{array}{lll|l}
1 & 0 & 2 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
R_{1}=R_{1}-2 R_{3} & \left(\begin{array}{lll|l}
1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0
\end{array}\right) \\
\underset{\text { man }}{R_{2}=R_{2}-R_{3}} & \left(\begin{array}{lll|l}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right)
\end{aligned}
$$

This is the reduced row echelon form. It says that the system has the unique solution

$$
x=0, \quad y=0, \quad z=0 .
$$

Alternatively, we could have used back-substitution at the time we reached

$$
\left(\begin{array}{lll|l}
1 & 0 & 2 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 3 & 0
\end{array}\right)
$$

The third row gives $3 z=0 \Longrightarrow z=0$.
The second row now gives $y+0 \Longrightarrow y=0$.
The first row gives $x+2(0)=0 \Longrightarrow x=0$.

