Math 1553 Worksheet: More lines, planes, §1.1, and §1.2, Spring 2018 Solutions

1. Find all values of *h* so that the lines x + hy = -5 and 2x - 8y = 6 do *not* intersect.

Solution.

We can use standard algebra, row operations, or geometric intuition. Using standard algebra: Let's see what happens when the lines *do* intersect. In that case, there is a point (x, y) where

$$\begin{aligned} x + hy &= -5\\ 2x - 8y &= 6. \end{aligned}$$

Subtracting twice the first equation from the second equation gives us

$$x + hy = -5$$

$$0 + (-8 - 2h)y = 16.$$

If -8 - 2h = 0 (so h = -4), then the second line is $0 \cdot y = 16$, which is impossible. In other words, if h = -4 then we cannot find a solution to the system of two equations, so the two lines *do not* intersect.

On the other hand, if $h \neq -4$, then we can solve for *y* above:

$$(-8-2h)y = 16$$
 $y = \frac{16}{-8-2h}$ $y = \frac{8}{-4-h}$.

We can now substitute this value of y into the first equation to find x:

$$x + hy = -5$$
 $x + h \cdot \frac{8}{-4 - h} = -5$ $x = -5 - \frac{8h}{-4 - h}$

Therefore, the lines fail to intersect if and only if h = -4.

Using row operations: Like the previous technique, let's see what happens if the lines intersect. We put the equations into augmented matrix form and use row operations.

$$\begin{bmatrix} 1 & h & | & -5 \\ 2 & -8 & | & 6 \end{bmatrix} \xrightarrow{R_2 = R_2 - 2R_1} \begin{bmatrix} 1 & h & | & -5 \\ 0 & -8 - 2h & | & 16 \end{bmatrix}$$

If -8 - 2h = 0 (so h = -4), then the second equation is 0 = 16, so our system has no solutions. In other words, the lines do not intersect.

If $h \neq -4$, then the second equation is (-8-2h)y = 16, so $y = \frac{16}{-8-2h} = \frac{8}{-4-h}$, and $x = -5-hy = -5-\frac{8h}{-4-h}$, so the lines intersect at $\left(-5-\frac{8h}{-4-h}, \frac{8}{-4-h}\right)$.

Therefore, our answer is h = -4.

Using intuition from geometry: Two non-identical lines in the *xy*-plane intersect if and only if they are not parallel. The second line is $y = \frac{1}{4}x - \frac{3}{4}$, so its slope is $\frac{1}{4}$. If $h \neq 0$, then the first line is $y = -\frac{1}{h}x - \frac{5}{h}$, so the lines are parallel when $-\frac{1}{h} = \frac{1}{4}$, which means h = -4. You can check that when h = -4 the lines aren't identical. (And if h = 0 then the first line is vertical so it isn't parallel to the second).

- a) Which of the following matrices are in row echelon form? Which are in reduced row echelon form?
 - b) Which entries are the pivots? Which are the pivot columns?

(1	0	1	0)	(1)	4	0	1)
0	1	-3	0	0	0	1	$\begin{pmatrix} 1 \\ 2 \end{pmatrix}$
(0	0	0	1)	0	0	0	0)

Solution.

Both matrices are in reduced row echelon form. The pivots are in red; the other entries in the pivot columns are in blue.

3. Suppose that each augmented matrix below represents a linear system in the variables x, y, and z (with the last column being after the = sign). Which of the systems are consistent? Which have a *unique* solution?

Solution.

The bottom row says 0 = -10, which is preposterous. Therefore, the system is inconsistent (it has no solutions).

$$\begin{array}{c} \text{(b)} \begin{pmatrix} 3 & -4 & 2 & | & 0 \\ -8 & 12 & -4 & | & 0 \\ -6 & 8 & -1 & | & 0 \end{pmatrix} & \begin{array}{c} R_2 = R_2 + 3R_1 \\ \hline \end{array} & \begin{pmatrix} 3 & -4 & 2 & | & 0 \\ 1 & 0 & 2 & | & 0 \\ -6 & 8 & -1 & | & 0 \end{pmatrix} \\ \hline R_1 \longleftrightarrow R_2 \\ \hline \end{array} & \begin{array}{c} R_1 \longleftrightarrow R_2 \\ \hline \end{array} & \begin{pmatrix} 1 & 0 & 2 & | & 0 \\ 3 & -4 & 2 & | & 0 \\ -6 & 8 & -1 & | & 0 \end{pmatrix} \\ \hline R_2 = R_2 - 3R_1 \\ \hline \end{array} & \begin{pmatrix} 1 & 0 & 2 & | & 0 \\ 0 & -4 & -4 & | & 0 \\ -6 & 8 & -1 & | & 0 \end{pmatrix} \\ \hline R_3 = R_3 + 6R_1 \\ \hline \end{array} & \begin{array}{c} 1 & 0 & 2 & | & 0 \\ 0 & -4 & -4 & | & 0 \\ 0 & 8 & 11 & | & 0 \end{pmatrix} \\ \hline R_2 = R_2 \div -4 \\ \hline \end{array} & \begin{array}{c} 1 & 0 & 2 & | & 0 \\ 0 & -4 & -4 & | & 0 \\ 0 & 8 & 11 & | & 0 \end{pmatrix} \\ \hline R_3 = R_3 - 8R_2 \\ \hline \end{array} & \begin{array}{c} 1 & 0 & 2 & | & 0 \\ 0 & 1 & 1 & | & 0 \\ 0 & 0 & 3 & | & 0 \end{pmatrix} \\ \hline R_3 = R_3 \div 3 \\ \hline \end{array} & \begin{array}{c} 1 & 0 & 2 & | & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 3 & | & 0 \end{pmatrix} \\ \hline \end{array} \\ \hline \end{array}$$

$$\begin{array}{c|c} R_1 = R_1 - 2R_3 \\ R_2 = R_2 - R_3 \\ \end{array} & \begin{pmatrix} 1 & 0 & 0 & | & 0 \\ 0 & 1 & 1 & | & 0 \\ 0 & 0 & 1 & | & 0 \end{pmatrix} \\ \begin{array}{c} R_2 = R_2 - R_3 \\ 0 & 1 & 0 & | & 0 \\ 0 & 0 & 1 & | & 0 \end{pmatrix} \end{array}$$

This is the reduced row echelon form. It says that the system has the unique solution

$$x = 0, \quad y = 0, \quad z = 0$$

Alternatively, we could have used back-substitution at the time we reached

$$\begin{pmatrix} 1 & 0 & 2 & | & 0 \\ 0 & 1 & 1 & | & 0 \\ 0 & 0 & 3 & | & 0 \end{pmatrix}.$$

The third row gives $3z = 0 \implies z = 0$.
The second row now gives $y + 0 \implies y = 0$.
The first row gives $x + 2(0) = 0 \implies x = 0$.