# Section 1.8/1.9

Linear Transformations

### Motivation

Let A be a matrix, and consider the matrix equation b = Ax. If we vary x, we can think of this as a *function* of x.

Many functions in real life—the *linear* transformations—come from matrices in this way.

It makes us happy when a function comes from a matrix, because then questions about the function translate into questions a matrix, which we can usually answer.

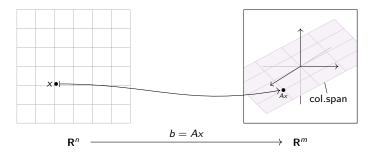
For this reason, we want to study matrices as functions.

### Matrices as Functions

Change in Perspective. Let A be a matrix with m rows and n columns. Let's think about the matrix equation b = Ax as a function.

- The independent variable (the input) is x, which is a vector in  $\mathbf{R}^n$ .
- The dependent variable (the output) is b, which is a vector in  $\mathbf{R}^m$ .

As you vary x, then b = Ax also varies. The set of all possible output vectors b is the column span of A.



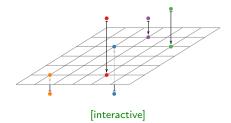
[interactive 1] [interactive 2]

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

In the equation Ax = b, the input vector x is in  $\mathbb{R}^3$  and the output vector b is in  $\mathbb{R}^3$ . Then

$$A\begin{pmatrix}x\\y\\z\end{pmatrix} = \begin{pmatrix}1 & 0 & 0\\0 & 1 & 0\\0 & 0 & 0\end{pmatrix}\begin{pmatrix}x\\y\\z\end{pmatrix} = \begin{pmatrix}x\\y\\0\end{pmatrix}.$$

This is projection onto the xy-plane. Picture:



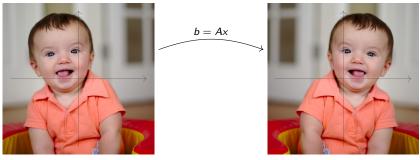
Matrices as Functions Reflection

$$A = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$$

In the equation Ax = b, the input vector x is in  $\mathbb{R}^2$  and the output vector b is in  $\mathbb{R}^2$ . Then

$$A\begin{pmatrix}x\\y\end{pmatrix} = \begin{pmatrix}-1 & 0\\0 & 1\end{pmatrix}\begin{pmatrix}x\\y\end{pmatrix} = \begin{pmatrix}-x\\y\end{pmatrix}.$$

This is *reflection over the y-axis*. Picture:

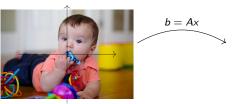


$$A = \begin{pmatrix} 1.5 & 0 \\ 0 & 1.5 \end{pmatrix}$$

In the equation Ax = b, the input vector x is in  $\mathbf{R}^2$  and the output vector b is in  $\mathbf{R}^2$ .

$$A\begin{pmatrix}x\\y\end{pmatrix} = \begin{pmatrix}1.5 & 0\\0 & 1.5\end{pmatrix}\begin{pmatrix}x\\y\end{pmatrix} = \begin{pmatrix}1.5x\\1.5y\end{pmatrix} = 1.5\begin{pmatrix}x\\y\end{pmatrix}.$$

This is dilation (scaling) by a factor of 1.5. Picture:



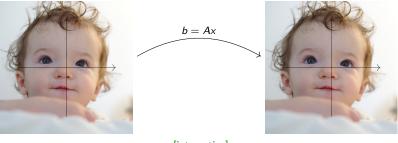


$$A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

In the equation Ax = b, the input vector x is in  $\mathbf{R}^2$  and the output vector b is in  $\mathbf{R}^2$ .

$$A\begin{pmatrix} x\\ y \end{pmatrix} = \begin{pmatrix} 1 & 0\\ 0 & 1 \end{pmatrix} \begin{pmatrix} x\\ y \end{pmatrix} = \begin{pmatrix} x\\ y \end{pmatrix}.$$

This is the identity transformation which does nothing. Picture:



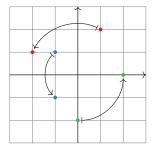
$$A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

In the equation Ax = b, the input vector x is in  $\mathbf{R}^2$  and the output vector b is in  $\mathbf{R}^2$ . Then

$$A\begin{pmatrix}x\\y\end{pmatrix} = \begin{pmatrix}0 & -1\\1 & 0\end{pmatrix}\begin{pmatrix}x\\y\end{pmatrix} = \begin{pmatrix}-y\\x\end{pmatrix}.$$

What is this? Let's plug in a few points and see what happens.

$$A\begin{pmatrix}1\\2\end{pmatrix} = \begin{pmatrix}-2\\1\end{pmatrix}$$
$$A\begin{pmatrix}-1\\1\end{pmatrix} = \begin{pmatrix}-1\\-1\end{pmatrix}$$
$$A\begin{pmatrix}0\\-2\end{pmatrix} = \begin{pmatrix}2\\0\end{pmatrix}$$



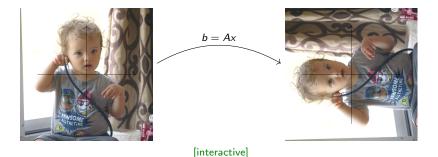
It looks like counterclockwise rotation by 90°.

Matrices as Functions Rotation

$$A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

In the equation Ax = b, the input vector x is in  $\mathbb{R}^2$  and the output vector b is in  $\mathbb{R}^2$ . Then

$$A\begin{pmatrix}x\\y\end{pmatrix} = \begin{pmatrix}0 & -1\\1 & 0\end{pmatrix}\begin{pmatrix}x\\y\end{pmatrix} = \begin{pmatrix}-y\\x\end{pmatrix}.$$



In §1.9 of Lay, there is a long list of geometric transformations of  $\mathbf{R}^2$  given by matrices. (Reflections over the diagonal, contractions and expansions along different axes, shears, projections,  $\ldots$ ) Please look them over.

We have been drawing pictures of what it looks like to multiply a matrix by a vector, as a function of the vector.

Now let's go the other direction. Suppose we have a function, and we want to know, does it come from a matrix?

### Example

For a vector x in  $\mathbf{R}^2$ , let T(x) be the counterclockwise rotation of x by an angle  $\theta$ . Is T(x) = Ax for some matrix A?

If  $\theta = 90^{\circ}$ , then we know T(x) = Ax, where

$$A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}.$$

But for general  $\theta$ , it's not clear.

Our next goal is to answer this kind of question.

### Transformations Vocabulary

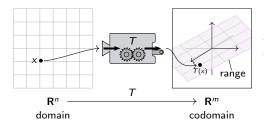
### Definition

A transformation (or function or map) from  $\mathbf{R}^n$  to  $\mathbf{R}^m$  is a rule T that assigns to each vector x in  $\mathbf{R}^n$  a vector T(x) in  $\mathbf{R}^m$ .

- $\mathbf{R}^n$  is called the **domain** of T (the inputs).
- $\mathbf{R}^m$  is called the **codomain** of T (the outputs).
- ► For x in  $\mathbb{R}^n$ , the vector T(x) in  $\mathbb{R}^m$  is the image of x under T. Notation:  $x \mapsto T(x)$ .
- The set of all images  $\{T(x) \mid x \text{ in } \mathbb{R}^n\}$  is the range of T.

Notation:

 $\mathcal{T}\colon \mathbf{R}^n\longrightarrow \mathbf{R}^m \quad \text{means} \quad \mathcal{T} \text{ is a transformation from } \mathbf{R}^n \text{ to } \mathbf{R}^m.$ 



It may help to think of T as a "machine" that takes x as an input, and gives you T(x) as the output.

Many of the functions you know and love have domain and codomain  ${\bf R}.$ 

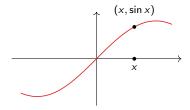
sin: 
$$\mathbf{R} \longrightarrow \mathbf{R}$$
 sin(x) =   
 $\begin{pmatrix} \text{the length of the opposite edge over the } \\ \text{hypotenuse of a right triangle with angle} \\ x \text{ in radians} \end{pmatrix}$ 

Note how I've written down the *rule* that defines the function sin.

$$f: \mathbf{R} \longrightarrow \mathbf{R} \qquad f(x) = x^2$$

Note that " $x^{2}$ " is sloppy (but common) notation for a function: it doesn't have a name!

You may be used to thinking of a function in terms of its graph.



The horizontal axis is the domain, and the vertical axis is the codomain.

This is fine when the domain and codomain are  $\mathbf{R}$ , but it's hard to do when they're  $\mathbf{R}^2$  and  $\mathbf{R}^3$ ! You need five dimensions to draw that graph.

### Definition

Let A be an  $m \times n$  matrix. The **matrix transformation** associated to A is the transformation

$$T: \mathbf{R}^n \longrightarrow \mathbf{R}^m$$
 defined by  $T(x) = Ax$ .

In other words, T takes the vector x in  $\mathbb{R}^n$  to the vector Ax in  $\mathbb{R}^m$ . For example, if  $A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$  and T(x) = Ax then

$$T\begin{pmatrix} -1\\ -2\\ -3 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3\\ 4 & 5 & 6 \end{pmatrix} \begin{pmatrix} -1\\ -2\\ -3 \end{pmatrix} = \begin{pmatrix} -14\\ -32 \end{pmatrix}.$$

Your life will be much easier if you just remember these. The domain of T is R<sup>n</sup>, which is the number of columns of A.

- The *codomain* of T is  $\mathbf{R}^m$ , which is the number of *rows* of A.
- The *range* of *T* is the set of all images of *T*:

$$T(x) = Ax = \begin{pmatrix} | & | & | \\ v_1 & v_2 & \cdots & v_n \\ | & | & | & | \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = x_1v_1 + x_2v_2 + \cdots + x_nv_n.$$

This is the column span of A. It is a span of vectors in the codomain.

### Matrix Transformations Example

Let 
$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 1 \end{pmatrix}$$
 and let  $T(x) = Ax$ , so  $T : \mathbb{R}^2 \to \mathbb{R}^3$ .  
If  $u = \begin{pmatrix} 3 \\ 4 \end{pmatrix}$  then  $T(u) = \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 3 \\ 4 \end{pmatrix} = \begin{pmatrix} 7 \\ 4 \\ 7 \end{pmatrix}$ .  
Let  $b = \begin{pmatrix} 7 \\ 5 \\ 7 \end{pmatrix}$ . Find  $v$  in  $\mathbb{R}^2$  such that  $T(v) = b$ . Is there more than one?

We want to find v such that T(v) = Av = b. We know how to do that:

$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 1 \end{pmatrix} \nu = \begin{pmatrix} 7 \\ 5 \\ 7 \end{pmatrix} \xrightarrow{\text{augmented}}_{\text{matrix}} \begin{pmatrix} 1 & 1 & | & 7 \\ 0 & 1 & | & 5 \\ 1 & 1 & | & 7 \end{pmatrix} \xrightarrow{\text{row}}_{\text{reduce}} \begin{pmatrix} 1 & 0 & | & 2 \\ 0 & 1 & | & 5 \\ 0 & 0 & | & 0 \end{pmatrix}.$$

This gives x = 2 and y = 5, or  $v = \begin{pmatrix} 2 \\ 5 \end{pmatrix}$  (unique). In other words,

$$T(v) = \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 2 \\ 5 \end{pmatrix} = \begin{pmatrix} 7 \\ 5 \\ 7 \end{pmatrix}.$$

#### Matrix Transformations Example. continued

Let 
$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 1 \end{pmatrix}$$
 and let  $T(x) = Ax$ , so  $T : \mathbf{R}^2 \to \mathbf{R}^3$ .

▶ Is there any c in  $\mathbb{R}^3$  such that there is more than one v in  $\mathbb{R}^2$  with T(v) = c?

Translation: is there any c in  $\mathbf{R}^3$  such that the solution set of Ax = c has more than one vector v in it?

The solution set of Ax = c is a translate of the solution set of Ax = b (from before), which has one vector in it. So the solution set to Ax = c has only one vector. So no!

▶ Find c such that there is no v with T(v) = c.
 Translation: Find c such that Ax = c is inconsistent.
 Translation: Find c not in the column span of A (i.e., the range of T).
 We could draw a picture, or notice that if c = (<sup>1</sup>/<sub>3</sub>), then our matrix equation translates into

$$x+y=1 \qquad y=2 \qquad x+y=3,$$

which is obviously inconsistent.

Note: All of these questions are questions about *the transformation* T; it still makes sense to ask them in the absence of the matrix A.

The fact that T comes from a matrix means that these questions translate into questions about a matrix, which we know how to do.

Non-example: 
$$T : \mathbf{R}^2 \to \mathbf{R}^3$$
  $T\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \sin x \\ xy \\ \cos y \end{pmatrix}$ 

Question: Is there any c in  $\mathbb{R}^3$  such that there is more than one v in  $\mathbb{R}^2$  with T(v) = c?

Note the question still makes sense, although T has no hope of being a matrix transformation.

By the way,

$$\mathcal{T}\begin{pmatrix}0\\0\end{pmatrix} = \begin{pmatrix}\sin 0\\0\cdot 0\\\cos 0\end{pmatrix} = \begin{pmatrix}0\\0\\1\end{pmatrix} = \begin{pmatrix}\sin \pi\\0\cdot \pi\\\cos 0\end{pmatrix} = \mathcal{T}\begin{pmatrix}\pi\\0\end{pmatrix},$$

so the answer is yes.

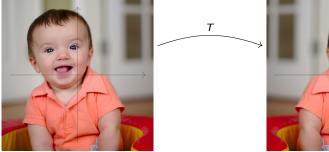
The picture of a matrix transformation is the same as the pictures we've been drawing all along. Only the language is different. Let

$$A = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$$
 and let  $T(x) = Ax$ ,

so  $\mathcal{T} \colon \mathbf{R}^2 \to \mathbf{R}^2$ . Then

$$T\begin{pmatrix}x\\y\end{pmatrix} = A\begin{pmatrix}x\\y\end{pmatrix} = \begin{pmatrix}-1 & 0\\0 & 1\end{pmatrix}\begin{pmatrix}x\\y\end{pmatrix} = \begin{pmatrix}-x\\y\end{pmatrix},$$

which is still is *reflection over the y-axis*. Picture:



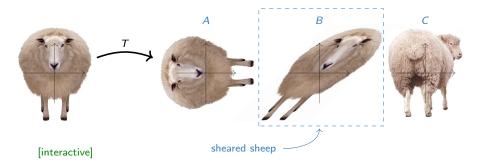


# [Was not done in class] Let $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ and let T(x) = Ax, so $T : \mathbf{R}^2 \to \mathbf{R}^2$ . (*T* is called a **shear**.)

What does T do to this sheep?

Poll

Hint: first draw a picture what it does to the box *around* the sheep.



So, which transformations actually come from matrices?

Recall: If A is a matrix, u, v are vectors, and c is a scalar, then

$$A(u+v) = Au + Av$$
  $A(cv) = cAv$ .

So if T(x) = Ax is a matrix transformation then,

T(u+v) = T(u) + T(v) and T(cv) = cT(v).

Any matrix transformation has to satisfy this property. This property is so special that it has its own name.

### Definition

A transformation  $T : \mathbf{R}^n \to \mathbf{R}^m$  is **linear** if it satisfies the above equations for all vectors u, v in  $\mathbf{R}^n$  and all scalars c.

In other words, T "respects" addition and scalar multiplication.

Check: if T is linear, then

$$T(0) = 0 \qquad T(cu + dv) = cT(u) + dT(v)$$

for all vectors u, v and scalars c, d. More generally,

 $T(c_1v_1 + c_2v_2 + \cdots + c_nv_n) = c_1T(v_1) + c_2T(v_2) + \cdots + c_nT(v_n).$ 

In engineering this is called **superposition**.

## Summary

- We can think of b = Ax as a transformation with input x and output b. This gives us a way to draw pictures of the geometry of a matrix.
- ▶ There are lots of questions that one can ask about transformations.
- ► We like transformations that come from matrices, because questions about those transformations turn into questions about matrices.
- Linear transformations are the transformations that come from matrices.

# Linear Transformations Dilation

Define 
$$T : \mathbf{R}^2 \to \mathbf{R}^2$$
 by  $T(x) = 1.5x$ . Is  $T$  linear? Check:  
 $T(u + v) = 1.5(u + v) = 1.5u + 1.5v = T(u) + T(v)$   
 $T(cv) = 1.5(cv) = c(1.5v) = c(Tv)$ .

So T satisfies the two equations, hence T is linear.

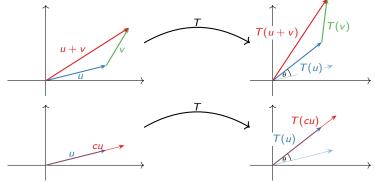
Note: T is a matrix transformation!

$$T(x) = \begin{pmatrix} 1.5 & 0 \\ 0 & 1.5 \end{pmatrix} x,$$

as we checked before.

# Linear Transformations

Define  $T : \mathbf{R}^2 \to \mathbf{R}^2$  by T(x) = the vector x rotated counterclockwise by an angle of  $\theta$ . Is T linear? Check:



The pictures show T(u) + T(v) = T(u + v) and T(cu) = cT(u).

Since T satisfies the two equations, T is linear.

Is every transformation a linear transformation?

No! For instance, 
$$T\begin{pmatrix}x\\y\end{pmatrix} = \begin{pmatrix}\sin x\\xy\\\cos y\end{pmatrix}$$
 is not linear.

Why? We have to check the two defining properties. Let's try the second:

$$T\left(c\begin{pmatrix}x\\y\end{pmatrix}\right) = \begin{pmatrix}\sin(cx)\\(cx)(cy)\\\cos(cy)\end{pmatrix} \stackrel{?}{=} c\begin{pmatrix}\sin x\\xy\\\cos y\end{pmatrix} = cT\begin{pmatrix}x\\y\end{pmatrix}$$

Not necessarily: if c = 2 and  $x = \pi$ ,  $y = \pi$ , then

$$T\left(2\begin{pmatrix}\pi\\\pi\end{pmatrix}\right) = T\begin{pmatrix}2\pi\\2\pi\end{pmatrix} = \begin{pmatrix}\sin 2\pi\\2\pi \cdot 2\pi\\\cos 2\pi\end{pmatrix} = \begin{pmatrix}0\\4\pi^2\\1\end{pmatrix}$$
$$2T\begin{pmatrix}\pi\\\pi\end{pmatrix} = 2\begin{pmatrix}\sin \pi\\\pi \cdot \pi\\\cos \pi\end{pmatrix} = \begin{pmatrix}0\\2\pi^2\\-2\end{pmatrix}.$$

So T fails the second property. Conclusion: T is *not* a matrix transformation! (We could also have noted  $T(0) \neq 0$ .)

### Poll

Poll Which of the following transformations are linear? **A.**  $T\begin{pmatrix}x_1\\x_2\end{pmatrix} = \begin{pmatrix}|x_1|\\x_2\end{pmatrix}$  **B.**  $T\begin{pmatrix}x_1\\x_2\end{pmatrix} = \begin{pmatrix}2x_1 + x_2\\x_1 - 2x_2\end{pmatrix}$ **C.**  $T\begin{pmatrix}x_1\\x_2\end{pmatrix} = \begin{pmatrix}x_1x_2\\x_2\end{pmatrix}$  **D.**  $T\begin{pmatrix}x_1\\x_2\end{pmatrix} = \begin{pmatrix}2x_1 + 1\\x_1 - 2x_2\end{pmatrix}$ 

**A.** 
$$T\left(\begin{pmatrix}1\\0\end{pmatrix}+\begin{pmatrix}-1\\0\end{pmatrix}\right)=\begin{pmatrix}0\\0\end{pmatrix}\neq\begin{pmatrix}2\\0\end{pmatrix}=T\begin{pmatrix}1\\0\end{pmatrix}+T\begin{pmatrix}-1\\0\end{pmatrix}$$
, so not linear.

B. Linear.

**C.** 
$$T\left(2\begin{pmatrix}1\\1\end{pmatrix}\right) = \begin{pmatrix}4\\2\end{pmatrix} \neq 2T\begin{pmatrix}1\\1\end{pmatrix}$$
, so not linear  
**D.**  $T\begin{pmatrix}0\\0\end{pmatrix} = \begin{pmatrix}1\\0\end{pmatrix} \neq 0$ , so not linear.

**Remark**: in fact, T is linear if and only if each entry of the output is a linear function of the entries of the input, with no constant terms. Check this!

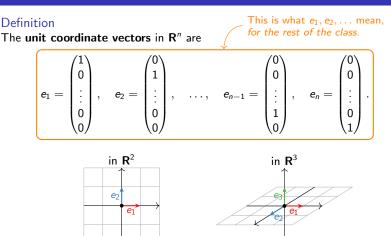
## The Matrix of a Linear Transformation

We will see that a *linear* transformation T is a matrix transformation: T(x) = Ax.

But what matrix does T come from? What is A?

Here's how to compute it.

### Unit Coordinate Vectors



Note: if A is an  $m \times n$  matrix with columns  $v_1, v_2, \ldots, v_n$ , then  $Ae_i = v_i$  for  $i = 1, 2, \ldots, n$ : multiplying a matrix by  $e_i$  gives you the *i*th column.  $\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 4 \\ 7 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 2 \\ 5 \\ 8 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 3 \\ 6 \\ 9 \end{pmatrix}$ 

**Recall**: A matrix A defines a linear transformation T by T(x) = Ax.

#### Theorem

 $T: \mathbf{R}^n \to \mathbf{R}^m$ 

Let  $T: \mathbf{R}^n \to \mathbf{R}^m$  be a linear transformation. Let

$$A = \begin{pmatrix} | & | & | \\ T(e_1) & T(e_2) & \cdots & T(e_n) \\ | & | & | \end{pmatrix}.$$

This is an  $m \times n$  matrix, and T is the matrix transformation for A: T(x) = Ax. The matrix A is called the **standard matrix** for T.

 Take-Away

 Linear transformations are the same as matrix transformations.

#### Dictionary

Linear transformation  

$$T: \mathbf{R}^n \to \mathbf{R}^m$$
 $m \times n \text{ matrix } A = \begin{pmatrix} | & | & | \\ T(e_1) & T(e_2) & \cdots & T(e_n) \\ | & | & | \end{pmatrix}$ 
 $T(x) = Ax$ 

 $\leftrightarrow m \times n$  matrix A

Why is a linear transformation a matrix transformation?

Suppose for simplicity that  $T \colon \mathbf{R}^3 \to \mathbf{R}^2$ .

$$T\begin{pmatrix} x\\ y\\ z \end{pmatrix} = T\begin{pmatrix} x\begin{pmatrix} 1\\ 0\\ 0 \end{pmatrix} + y\begin{pmatrix} 0\\ 1\\ 0 \end{pmatrix} + z\begin{pmatrix} 0\\ 0\\ 1 \end{pmatrix} \end{pmatrix}$$
$$= T(xe_1 + ye_2 + ze_3)$$
$$= xT(e_1) + yT(e_2) + zT(e_3)$$
$$= \begin{pmatrix} | & | & |\\ T(e_1) & T(e_2) & T(e_3)\\ | & | & | \end{pmatrix} \begin{pmatrix} x\\ y\\ z \end{pmatrix}$$
$$= A\begin{pmatrix} x\\ y\\ z \end{pmatrix}.$$

Before, we defined a **dilation** transformation  $T: \mathbb{R}^2 \to \mathbb{R}^2$  by T(x) = 1.5x. What is its standard matrix?

$$\begin{array}{c} T(e_1) = 1.5e_1 = \begin{pmatrix} 1.5\\ 0 \end{pmatrix} \\ T(e_2) = 1.5e_2 = \begin{pmatrix} 0\\ 1.5 \end{pmatrix} \end{array} \implies A = \begin{pmatrix} 1.5 & 0\\ 0 & 1.5 \end{pmatrix}.$$

Check:

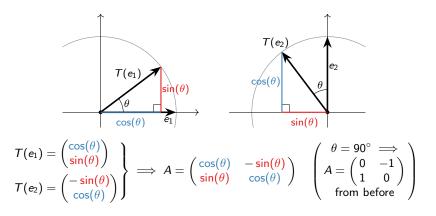
$$\begin{pmatrix} 1.5 & 0 \\ 0 & 1.5 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1.5x \\ 1.5y \end{pmatrix} = 1.5 \begin{pmatrix} x \\ y \end{pmatrix} = T \begin{pmatrix} x \\ y \end{pmatrix}.$$

# Linear Transformations are Matrix Transformations $_{\mbox{\scriptsize Example}}$

### Question

What is the matrix for the linear transformation  $\, {\cal T} \colon {\bf R}^2 \to {\bf R}^2$  defined by

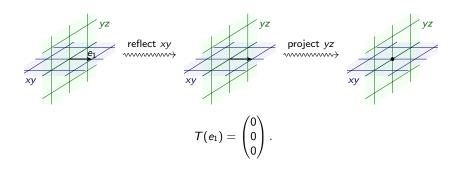
T(x) = x rotated counterclockwise by an angle  $\theta$ ?



# Linear Transformations are Matrix Transformations $_{\mbox{\sc Example}}$

### Question

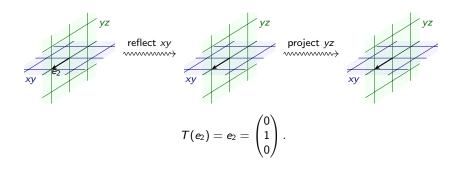
What is the matrix for the linear transformation  $T: \mathbb{R}^3 \to \mathbb{R}^3$  that reflects through the *xy*-plane and then projects onto the *yz*-plane?



Example, continued

### Question

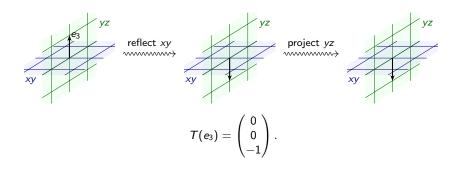
What is the matrix for the linear transformation  $T: \mathbb{R}^3 \to \mathbb{R}^3$  that reflects through the *xy*-plane and then projects onto the *yz*-plane?



Example, continued

### Question

What is the matrix for the linear transformation  $T: \mathbb{R}^3 \to \mathbb{R}^3$  that reflects through the *xy*-plane and then projects onto the *yz*-plane?



Example, continued

### Question

What is the matrix for the linear transformation  $T: \mathbb{R}^3 \to \mathbb{R}^3$  that reflects through the *xy*-plane and then projects onto the *yz*-plane?

$$T(e_{1}) = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

$$T(e_{2}) = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$

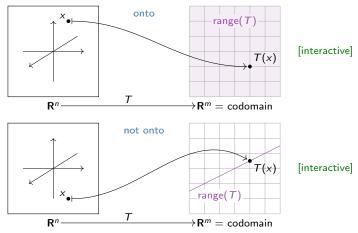
$$\implies A = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}.$$

$$T(e_{1}) = \begin{pmatrix} 0 \\ 0 \\ -1 \end{pmatrix}$$

### **Onto Transformations**

### Definition

A transformation  $T: \mathbb{R}^n \to \mathbb{R}^m$  is **onto** (or **surjective**) if the range of T is equal to  $\mathbb{R}^m$  (its codomain). In other words, for every b in  $\mathbb{R}^m$ , the equation T(x) = b has at *least one solution*. Or, every possible output has an input. Note that *not* onto means there is some b in  $\mathbb{R}^m$  which is not the image of any x in  $\mathbb{R}^n$ .



### Theorem

Let  $T: \mathbf{R}^n \to \mathbf{R}^m$  be a linear transformation with matrix A. Then the following are equivalent:

- ► T is onto
- T(x) = b has a solution for every b in  $\mathbf{R}^m$
- Ax = b is consistent for every b in  $\mathbf{R}^m$
- ▶ The columns of A span **R**<sup>m</sup>
- A has a pivot in every row

### Question

If  $T : \mathbf{R}^n \to \mathbf{R}^m$  is onto, what can we say about the relative sizes of n and m? Answer: T corresponds to an  $m \times n$  matrix A. In order for A to have a pivot in every row, it must have at *least as many* columns as rows:  $m \le n$ .

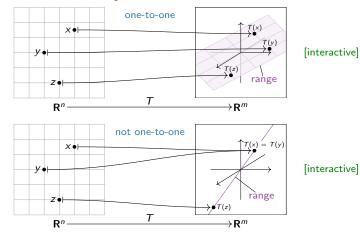
$$\begin{pmatrix} 1 & 0 & \star & 0 & \star \\ 0 & 1 & \star & 0 & \star \\ 0 & 0 & 0 & 1 & \star \end{pmatrix}$$

For instance,  $\mathbf{R}^2$  is "too small" to map onto  $\mathbf{R}^3$ .

## One-to-one Transformations

### Definition

A transformation  $T: \mathbb{R}^n \to \mathbb{R}^m$  is **one-to-one** (or **into**, or **injective**) if different vectors in  $\mathbb{R}^n$  map to different vectors in  $\mathbb{R}^m$ . In other words, for every *b* in  $\mathbb{R}^m$ , the equation T(x) = b has *at most one* solution *x*. Or, different inputs have different outputs. Note that *not* one-to-one means at least two different vectors in  $\mathbb{R}^n$  have the same image.



### Theorem

Let  $T : \mathbf{R}^n \to \mathbf{R}^m$  be a linear transformation with matrix A. Then the following are equivalent:

- ► T is one-to-one
- T(x) = b has one or zero solutions for every b in  $\mathbf{R}^m$
- Ax = b has a unique solution or is inconsistent for every b in  $\mathbf{R}^m$
- Ax = 0 has a unique solution
- The columns of A are linearly independent
- A has a pivot in every column.

## Question

If  $T : \mathbf{R}^n \to \mathbf{R}^m$  is one-to-one, what can we say about the relative sizes of n and m?

Answer: T corresponds to an  $m \times n$  matrix A. In order for A to have a pivot in every column, it must have at least as many rows as columns:  $n \le m$ .

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$
 For instance,  $\mathbf{R}^3$  is "too big" to map *into*  $\mathbf{R}^2$ .

## Summary

- Linear transformations are the transformations that come from matrices.
- ▶ The unit coordinate vectors  $e_1, e_2, ...$  are the unit vectors in the positive direction along the coordinate axes.
- You compute the columns of the matrix for a linear transformation by plugging in the unit coordinate vectors.
- A transformation T is **one-to-one** if T(x) = b has at most one solution, for every b in  $\mathbb{R}^m$ .
- A transformation T is **onto** if T(x) = b has at least one solution, for every b in  $\mathbb{R}^m$ .
- Two of the most basic questions one can ask about a transformation is whether it is one-to-one or onto.
- There are lots of equivalent conditions for a linear transformation to be one-to-one and/or onto, in terms of its matrix.