Section 2.2

The Inverse of a Matrix

Recall: The multiplicative inverse (or reciprocal) of a nonzero number *a* is the number b such that ab = 1 We define the inverse of a matrix in almost the same way.

Definition

Let A be an $n \times n$ square matrix. We say A is **invertible** (or **nonsingular**) if there is a matrix B of the same size. such that identity matrix

$$AB = I_n$$
 and $BA = I_n$.

 $AB = I_n \quad \text{and} \quad BA = I_n$ $\begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}$

Example

$$A = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} \qquad B = \begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix}.$$

I claim $B = A^{-1}$. Check:

$$AB = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
$$BA = \begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

[Not done in class]

Poll

Do there exist two matrices A and B such that AB is the identity, but BA is not? If so, find an example. (Both products have to make sense.)

Yes, for instance:
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$
 $B = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}$.

However If A and B are square matrices, then $AB = I_n$ if and only if $BA = I_n$. So in this case you only have to check one.

Solving Linear Systems via Inverses

Solving Ax = b by "dividing by A"

Theorem

If A is invertible, then Ax = b has exactly one solution for every b, namely:

$$x = A^{-1}b$$

Why? Divide by A! $Ax = b \xrightarrow{A^{-1}(Ax)} = A^{-1}b \xrightarrow{A^{-1}b} (A^{-1}A)x = A^{-1}b$ $I_nx = A^{-1}b \xrightarrow{X} = A^{-1}b.$

> Important If A is invertible and you know its inverse, then the easiest way to solve Ax = b is by "dividing by A": $x = A^{-1}b.$

Solving Linear Systems via Inverses Example

Example

Solve the system

$$2x_{1} + 3x_{2} + 2x_{3} = 1$$

$$x_{1} + 3x_{3} = 1$$

$$2x_{1} + 2x_{2} + 3x_{3} = 1$$

$$x_{1} + 2x_{2} + 3x_{3} = 1$$

$$x_{1} + 2x_{2} + 3x_{3} = 1$$

$$x_{1} + 2x_{2} + 3x_{3} = 1$$

$$x_{2} + 2x_{2} + 3x_{3} = 1$$

$$x_{1} + 2x_{2} + 3x_{3} = 1$$

$$x_{2} + 2x_{2} + 3x_{3} = 1$$

$$x_{1} + 2x_{2} + 3x_{3} = 1$$

$$x_{2} + 2x_{2} + 3x_{3} = 1$$

$$x_{1} + 2x_{2} + 3x_{3} = 1$$

$$x_{1} + 2x_{2} + 3x_{3} = 1$$

$$x_{1} + 2x_{2} + 3x_{3} = 1$$

$$x_{2} + 2x_{2} + 3x_{3} = 1$$

$$x_{1} + 2x_{2} + 3x_{3} = 1$$

$$x_{2} + 2x_{2} + 3x_{3} = 1$$

$$x_{1} + 2x_{2} + 3x_{3} = 1$$

$$x_{1} + 2x_{2} + 3x_{3} = 1$$

$$x_{2} + 2x_{2} + 3x_{3} = 1$$

$$x_{1} + 2x_{2} + 3x_{3} = 1$$

$$x_{2} + 2x_{2} + 3x_{3} = 1$$

$$x_{2} + 2x_{2} + 3x_{3} = 1$$

$$x_{1} + 2x_{2} + 3x_{3} = 1$$

$$x_{2} + 2x_{2} + 3x_{3} = 1$$

$$x_{2} + 2x_{2} + 3x_{3} = 1$$

$$x_{2} + 2x_{2} + 3x_{3} = 1$$

$$x_{1} + 2x_{2} + 3x_{3} = 1$$

$$x_{2} + 2x_{3} + 2x_{3}$$

The advantage of using inverses is it doesn't matter what's on the right-hand side of the = :

$$\begin{cases} 2x_1 + 3x_2 + 2x_3 = b_1 \\ x_1 + 3x_3 = b_2 \\ 2x_1 + 2x_2 + 3x_3 = b_3 \end{cases} \xrightarrow{(x_1)} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 2 & 3 & 2 \\ 1 & 0 & 3 \\ 2 & 2 & 3 \end{pmatrix}^{-1} \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}.$$

-

Some Facts

Say A and B are invertible $n \times n$ matrices.

- 1. A^{-1} is invertible and its inverse is $(A^{-1})^{-1} = A$.
- 2. AB is invertible and its inverse is $(AB)^{-1} = A^{-1}B^{-1}$ $B^{-1}A^{-1}$.

Why?
$$(B^{-1}A^{-1})AB = B^{-1}(A^{-1}A)B = B^{-1}I_nB = B^{-1}B = I_n.$$

3.
$$A^T$$
 is invertible and $(A^T)^{-1} = (A^{-1})^T$

Why?
$$A^{T}(A^{-1})^{T} = (A^{-1}A)^{T} = I_{n}^{T} = I_{n}$$
.

Question: If A, B, C are invertible $n \times n$ matrices, what is the inverse of ABC?

i.
$$A^{-1}B^{-1}C^{-1}$$
 ii. $B^{-1}A^{-1}C^{-1}$ iii. $C^{-1}B^{-1}A^{-1}$ iv. $C^{-1}A^{-1}B^{-1}$

Check:

$$(ABC)(C^{-1}B^{-1}A^{-1}) = AB(CC^{-1})B^{-1}A^{-1} = A(BB^{-1})A^{-1}$$

= $AA^{-1} = I_n$.

In general, a product of invertible matrices is invertible, and the inverse is the product of the inverses, in the *reverse order*.

Computing A^{-1} The 2 × 2 case

Let
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
. The **determinant** of A is the number
 $det(A) = det \begin{pmatrix} a & b \\ c & d \end{pmatrix} = ad - bc.$

Facts:

1. If det(A) \neq 0, then A is invertible and $A^{-1} = \frac{1}{\det(A)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$. 2. If det(A) = 0, then A is not invertible.

Why 1?

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} = \begin{pmatrix} ad - bc & 0 \\ 0 & ad - bc \end{pmatrix} = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

So we get the identity by dividing by ad - bc.

Example

$$det \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} = 1 \cdot 4 - 2 \cdot 3 = -2 \qquad \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}^{-1} = -\frac{1}{2} \begin{pmatrix} 4 & -2 \\ -3 & 1 \end{pmatrix}.$$

Let A be an $n \times n$ matrix. Here's how to compute A^{-1} .

- 1. Row reduce the augmented matrix $(A \mid I_n)$.
- 2. If the result has the form ($I_n \mid B$), then A is invertible and $B = A^{-1}$.
- 3. Otherwise, A is not invertible.

Example

$$A=egin{pmatrix} 1 & 0 & 4 \ 0 & 1 & 2 \ 0 & -3 & -4 \end{pmatrix}$$

[interactive]

Computing A^{-1} Example

$$\begin{pmatrix} 1 & 0 & 4 & | & 1 & 0 & 0 \\ 0 & 1 & 2 & | & 0 & 1 & 0 \\ 0 & -3 & -4 & | & 0 & 0 & 1 \end{pmatrix} \xrightarrow{R_3 = R_3 + 3R_2} \begin{pmatrix} 1 & 0 & 4 & | & 1 & 0 & 0 \\ 0 & 1 & 2 & | & 0 & 1 & 0 \\ 0 & 0 & 2 & | & 0 & 3 & 1 \end{pmatrix}$$
$$\xrightarrow{R_1 = R_1 - 2R_3} \xrightarrow{R_2 = R_2 - R_3} \begin{pmatrix} 1 & 0 & 0 & | & 1 & -6 & -2 \\ 0 & 1 & 0 & | & 0 & -2 & -1 \\ 0 & 0 & 2 & | & 0 & 3 & 1 \end{pmatrix}$$
$$\xrightarrow{R_3 = R_3 \div 2} \begin{pmatrix} 1 & 0 & 0 & | & 1 & -6 & -2 \\ 0 & 1 & 0 & | & 0 & -2 & -1 \\ 0 & 0 & 1 & | & 0 & 3/2 & 1/2 \end{pmatrix}$$
So $\begin{pmatrix} 1 & 0 & 4 \\ 0 & 1 & 2 \\ 0 & -3 & -4 \end{pmatrix}^{-1} = \begin{pmatrix} 1 & -6 & -2 \\ 0 & -2 & -1 \\ 0 & 3/2 & 1/2 \end{pmatrix}$.
Check: $\begin{pmatrix} 1 & 0 & 4 \\ 0 & 1 & 2 \\ 0 & -3 & -4 \end{pmatrix} \begin{pmatrix} 1 & -6 & -2 \\ 0 & -2 & -1 \\ 0 & 3/2 & 1/2 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

Why Does This Work?

We can think of the algorithm as simultaneously solving the equations

$$Ax_{1} = e_{1}: \qquad \begin{pmatrix} 1 & 0 & 4 & | & 1 & 0 & 0 \\ 0 & 1 & 2 & | & 0 & 1 & 0 \\ 0 & -3 & -4 & | & 0 & 0 & 1 \end{pmatrix}$$
$$Ax_{2} = e_{2}: \qquad \begin{pmatrix} 1 & 0 & 4 & | & 1 & 0 & 0 \\ 0 & 1 & 2 & | & 0 & 1 & 0 \\ 0 & -3 & -4 & | & 0 & 0 & 1 \end{pmatrix}$$
$$Ax_{3} = e_{3}: \qquad \begin{pmatrix} 1 & 0 & 4 & | & 1 & 0 & 0 \\ 0 & 1 & 2 & | & 0 & 1 & 0 \\ 0 & 1 & 2 & | & 0 & 1 & 0 \\ 0 & -3 & -4 & | & 0 & 0 & 1 \end{pmatrix}$$

Now note $A^{-1}e_i = A^{-1}(Ax_i) = x_i$, and x_i is the *i*th column in the augmented part. Also $A^{-1}e_i$ is the *i*th column of A^{-1} .