## Section 5.2

## The Characteristic Equation

## The Invertible Matrix Theorem

We have a couple of new ways of saying " $A$ is invertible" now:

## The Invertible Matrix Theorem

Let $A$ be a square $n \times n$ matrix, and let $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ be the linear transformation $T(x)=A x$. The following statements are equivalent.

1. $A$ is invertible.
2. $T$ is invertible.
3. $A$ is row equivalent to $I_{n}$.
4. $A$ has $n$ pivots.
5. $A x=0$ has only the trivial solution.
6. The columns of $A$ are linearly independent.
7. $T$ is one-to-one.
8. $A x=b$ is consistent for all $b$ in $\mathbf{R}^{n}$.
9. The columns of $A$ span $\mathbf{R}^{n}$.
10. $T$ is onto.
11. $A$ has a left inverse (there exists $B$ such that $B A=I_{n}$ ).
12. $A$ has a right inverse (there exists $B$ such that $A B=I_{n}$ ).
13. $A^{T}$ is invertible.
14. The columns of $A$ form a basis for $\mathbf{R}^{n}$.
15. $\operatorname{Col} A=\mathbf{R}^{n}$.
16. $\operatorname{dim} \operatorname{Col} A=n$.
17. $\operatorname{rank} A=n$.
18. $\operatorname{Nul} A=\{0\}$.
19. $\operatorname{dim} \operatorname{Nul} A=0$.
20. The determinant of $A$ is not equal to zero.
21. The number 0 is not an eigenvalue of $A$.

## The Characteristic Polynomial

Let $A$ be a square matrix.
$\lambda$ is an eigenvalue of $A \Longleftrightarrow A x=\lambda x$ has a nontrivial solution
$\Longleftrightarrow(A-\lambda I) x=0$ has a nontrivial solution
$\Longleftrightarrow A-\lambda I$ is not invertible
$\Longleftrightarrow \operatorname{det}(A-\lambda I)=0$.
This gives us a way to compute the eigenvalues of $A$.

## Definition

Let $A$ be a square matrix. The characteristic polynomial of $A$ is

$$
f(\lambda)=\operatorname{det}(A-\lambda I)
$$

The characteristic equation of $A$ is the equation

$$
f(\lambda)=\operatorname{det}(A-\lambda I)=0
$$

## Important

The eigenvalues of $A$ are the roots of the characteristic polynomial $f(\lambda)=\operatorname{det}(A-\lambda I)$.

## The Characteristic Polynomial

## Example

Question: What are the eigenvalues of

$$
A=\left(\begin{array}{ll}
5 & 2 \\
2 & 1
\end{array}\right) ?
$$

Answer: First we find the characteristic polynomial:

$$
\begin{aligned}
f(\lambda) & =\operatorname{det}(A-\lambda I)=\operatorname{det}\left[\left(\begin{array}{ll}
5 & 2 \\
2 & 1
\end{array}\right)-\left(\begin{array}{ll}
\lambda & 0 \\
0 & \lambda
\end{array}\right)\right]=\operatorname{det}\left(\begin{array}{cc}
5-\lambda & 2 \\
2 & 1-\lambda
\end{array}\right) \\
& =(5-\lambda)(1-\lambda)-2 \cdot 2 \\
& =\lambda^{2}-6 \lambda+1
\end{aligned}
$$

The eigenvalues are the roots of the characteristic polynomial, which we can find using the quadratic formula:

$$
\lambda=\frac{6 \pm \sqrt{36-4}}{2}=3 \pm 2 \sqrt{2}
$$

## The Characteristic Polynomial

## Example

Question: What is the characteristic polynomial of

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) ?
$$

Answer:

$$
\begin{aligned}
f(\lambda) & =\operatorname{det}(A-\lambda I)=\operatorname{det}\left(\begin{array}{cc}
a-\lambda & b \\
c & d-\lambda
\end{array}\right)=(a-\lambda)(d-\lambda)-b c \\
& =\lambda^{2}-(a+d) \lambda+(a d-b c)
\end{aligned}
$$

What do you notice about $f(\lambda)$ ?

- The constant term is $\operatorname{det}(A)$, which is zero if and only if $\lambda=0$ is a root.
- The linear term $-(a+d)$ is the negative of the sum of the diagonal entries of $A$.


## Definition

The trace of a square matrix $A$ is $\operatorname{Tr}(A)=$ sum of the diagonal entries of $A$.

## Shortcut

The characteristic polynomial of a $2 \times 2$ matrix $A$ is

$$
f(\lambda)=\lambda^{2}-\operatorname{Tr}(A) \lambda+\operatorname{det}(A)
$$

## The Characteristic Polynomial

## Example

Question: What are the eigenvalues of the rabbit population matrix

$$
A=\left(\begin{array}{ccc}
0 & 6 & 8 \\
\frac{1}{2} & 0 & 0 \\
0 & \frac{1}{2} & 0
\end{array}\right) ?
$$

Answer: First we find the characteristic polynomial:

$$
\begin{aligned}
f(\lambda) & =\operatorname{det}(A-\lambda I)=\operatorname{det}\left(\begin{array}{ccc}
-\lambda & 6 & 8 \\
\frac{1}{2} & -\lambda & 0 \\
0 & \frac{1}{2} & -\lambda
\end{array}\right) \\
& =8\left(\frac{1}{4}-0 \cdot-\lambda\right)-\lambda\left(\lambda^{2}-6 \cdot \frac{1}{2}\right) \\
& =-\lambda^{3}+3 \lambda+2
\end{aligned}
$$

We know from before that one eigenvalue is $\lambda=2$ : indeed, $f(2)=-8+6+2=0$. Doing polynomial long division, we get:

$$
\frac{-\lambda^{3}+3 \lambda+2}{\lambda-2}=-\lambda^{2}-2 \lambda-1=-(\lambda+1)^{2}
$$

Hence $\lambda=-1$ is also an eigenvalue.

## Algebraic Multiplicity

## Definition

The (algebraic) multiplicity of an eigenvalue $\lambda$ is its multiplicity as a root of the characteristic polynomial.

This is not a very interesting notion yet. It will become interesting when we also define geometric multiplicity later.

## Example

In the rabbit population matrix, $f(\lambda)=-(\lambda-2)(\lambda+1)^{2}$, so the algebraic multiplicity of the eigenvalue 2 is 1 , and the algebraic multiplicity of the eigenvalue -1 is 2 .

## Example

In the matrix $\left(\begin{array}{ll}5 & 2 \\ 2 & 1\end{array}\right), f(\lambda)=(\lambda-(3-2 \sqrt{2}))(\lambda-(3+2 \sqrt{2}))$, so the algebraic multiplicity of $3+2 \sqrt{2}$ is 1 , and the algebraic multiplicity of $3-2 \sqrt{2}$ is 1 .

## The Characteristic Polynomial Poll

Fact: If $A$ is an $n \times n$ matrix, the characteristic polynomial

$$
f(\lambda)=\operatorname{det}(A-\lambda I)
$$

turns out to be a polynomial of degree $n$, and its roots are the eigenvalues of $A$ :

$$
f(\lambda)=(-1)^{n} \lambda^{n}+a_{n-1} \lambda^{n-1}+a_{n-2} \lambda^{n-2}+\cdots+a_{1} \lambda+a_{0}
$$

Poll
If you count the eigenvalues of $A$, with their algebraic multiplicities, you will get:
A. Always $n$.
B. Always at most $n$, but sometimes less.
C. Always at least $n$, but sometimes more.
D. None of the above.

The answer depends on whether you allow complex eigenvalues. If you only allow real eigenvalues, the answer is B. Otherwise it is A, because any degree-n polynomial has exactly $n$ complex roots, counted with multiplicity. Stay tuned.

## The $\mathcal{B}$-basis

Recall: If $\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$ is a basis for a subspace $V$ and $x$ is in $V$, then the $\mathcal{B}$-coordinates of $x$ are the (unique) coefficients $c_{1}, c_{2}, \ldots, c_{m}$ such that

$$
x=c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{m} v_{m}
$$

In this case, the $\mathcal{B}$-coordinate vector of $x$ is

$$
[x]_{\mathcal{B}}=\left(\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{m}
\end{array}\right)
$$

Example: The vectors

$$
v_{1}=\binom{1}{1} \quad v_{2}=\binom{1}{-1}
$$

form a basis for $\mathbf{R}^{2}$ because they are not collinear.

## Coordinate Systems on $\mathbf{R}^{n}$

Recall: A set of $n$ vectors $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ form a basis for $\mathbf{R}^{n}$ if and only if the matrix $C$ with columns $v_{1}, v_{2}, \ldots, v_{n}$ is invertible.

If $x=c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{n} v_{n}$ then

$$
[x]_{\mathcal{B}}=\left(\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{n}
\end{array}\right) \Longrightarrow x=c_{1} v_{1}+c_{2} v_{2}+c_{n} v_{n}=C[x]_{\mathcal{B}}
$$

Since $x=C[x]_{\mathcal{B}}$ we have $[x]_{\mathcal{B}}=C^{-1} x$.
Translation: Let $\mathcal{B}$ be the basis of columns of $C$. Multiplying by $C$ changes from the $\mathcal{B}$-coordinates to the usual coordinates, and multiplying by $C^{-1}$ changes from the usual coordinates to the $\mathcal{B}$-coordinates:

$$
[x]_{\mathcal{B}}=C^{-1} x \quad x=C[x]_{\mathcal{B}}
$$

## Similarity

## Definition

Two $n \times n$ matrices $A$ and $B$ are similar if there is an invertible $n \times n$ matrix $C$ such that

$$
A=C B C^{-1} .
$$

What does this mean? This gives you a different way of thinking about multiplication by $A$. Let $\mathcal{B}$ be the basis of columns of $C$.


To compute $A x$, you:

1. multiply $x$ by $C^{-1}$ to change to the $\mathcal{B}$-coordinates: $[x]_{\mathcal{B}}=C^{-1} x$
2. multiply this by $B: B[x]_{\mathcal{B}}=B C^{-1} x$
3. multiply this by $C$ to change to usual coordinates: $A x=C B C^{-1} x=C B[x]_{\mathcal{B}}$.

## Similarity

## Definition

Two $n \times n$ matrices $A$ and $B$ are similar if there is an invertible $n \times n$ matrix $C$ such that

$$
A=C B C^{-1} .
$$

What does this mean? This gives you a different way of thinking about multiplication by $A$. Let $\mathcal{B}$ be the basis of columns of $C$.
$\mathcal{B}$-coordinates

usual coordinates


If $A=C B C^{-1}$, then $A$ and $B$ do the same thing, but $B$ operates on the $\mathcal{B}$-coordinates, where $\mathcal{B}$ is the basis of columns of $C$.

## Similarity

$$
A=\left(\begin{array}{cc}
1 / 2 & 3 / 2 \\
3 / 2 & 1 / 2
\end{array}\right) \quad B=\left(\begin{array}{cc}
2 & 0 \\
0 & -1
\end{array}\right) \quad C=\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right) \quad A=C B C^{-1}
$$

What does $B$ do geometrically?
It scales the $x$-direction by 2 and the $y$-direction by -1 .
To compute $A x$, first change to the $\mathcal{B}$ coordinates, then multiply by $B$, then change back to the usual coordinates, where

$$
\mathcal{B}=\left\{\binom{1}{1},\binom{1}{-1}\right\}=\left\{v_{1}, v_{2}\right\} \quad \text { (the columns of } C \text { ). }
$$

$\mathcal{B}$-coordinates

usual coordinates


## Similarity

## Example

$$
A=\left(\begin{array}{cc}
1 / 2 & 3 / 2 \\
3 / 2 & 1 / 2
\end{array}\right) \quad B=\left(\begin{array}{cc}
2 & 0 \\
0 & -1
\end{array}\right) \quad C=\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right) \quad A=C B C^{-1}
$$

What does $B$ do geometrically?
It scales the $x$-direction by 2 and the $y$-direction by -1 .
To compute $A x$, first change to the $\mathcal{B}$ coordinates, then multiply by $B$, then change back to the usual coordinates, where

$$
\mathcal{B}=\left\{\binom{1}{1},\binom{1}{-1}\right\}=\left\{v_{1}, v_{2}\right\} \quad \text { (the columns of } C \text { ). }
$$

$\mathcal{B}$-coordinates

usual coordinates


## Similarity

$$
A=\left(\begin{array}{cc}
1 / 2 & 3 / 2 \\
3 / 2 & 1 / 2
\end{array}\right) \quad B=\left(\begin{array}{cc}
2 & 0 \\
0 & -1
\end{array}\right) \quad C=\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right) \quad A=C B C^{-1}
$$

What does $B$ do geometrically?
It scales the $x$-direction by 2 and the $y$-direction by -1 .
To compute $A x$, first change to the $\mathcal{B}$ coordinates, then multiply by $B$, then change back to the usual coordinates, where

$$
\mathcal{B}=\left\{\binom{1}{1},\binom{1}{-1}\right\}=\left\{v_{1}, v_{2}\right\} \quad \text { (the columns of } C \text { ). }
$$

$\mathcal{B}$-coordinates

usual coordinates


## Similarity

Example

$$
A=\left(\begin{array}{cc}
1 / 2 & 3 / 2 \\
3 / 2 & 1 / 2
\end{array}\right) \quad B=\left(\begin{array}{cc}
2 & 0 \\
0 & -1
\end{array}\right) \quad C=\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right) \quad A=C B C^{-1}
$$

What does $B$ do geometrically?
It scales the $x$-direction by 2 and the $y$-direction by -1 .
To compute $A x$, first change to the $\mathcal{B}$ coordinates, then multiply by $B$, then change back to the usual coordinates, where

$$
\mathcal{B}=\left\{\binom{1}{1},\binom{1}{-1}\right\}=\left\{v_{1}, v_{2}\right\} \quad \text { (the columns of } C \text { ). }
$$

$\mathcal{B}$-coordinates

usual coordinates


## Similarity

Example
What does $A$ do geometrically?

- $B$ scales the $e_{1}$-direction by 2 and the $e_{2}$-direction by -1 .
- $A$ scales the $V_{1}$-direction by 2 and the $V_{2}$-direction by -1 .

```
columns of C
```


[interactive]


Since $B$ is simpler than $A$, this makes it easier to understand $A$. Note the relationship between the eigenvalues/eigenvectors of $A$ and $B$.

## Similarity

Example $(3 \times 3)$

$$
\begin{aligned}
A=\left(\begin{array}{ccc}
-3 & -5 & -3 \\
2 & 4 & 3 \\
-3 & -5 & -2
\end{array}\right) & B=\left(\begin{array}{ccc}
2 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right) \quad C=\left(\begin{array}{ccc}
-1 & 1 & 0 \\
1 & -1 & 1 \\
-1 & 0 & 1
\end{array}\right) \\
& \Longrightarrow A=C B C^{-1} .
\end{aligned}
$$

What do $A$ and $B$ do geometrically?

- $B$ scales the $e_{1}$-direction by 2 , the $e_{2}$-direction by -1 , and fixes $e_{3}$.
- $A$ scales the $v_{1}$-direction by 2 , the $v_{2}$-direction by -1 , and fixes $v_{3}$.

Here $v_{1}, v_{2}, v_{3}$ are the columns of $C$.
[interactive]

## Similar Matrices Have the Same Characteristic Polynomial

Fact: If $A$ and $B$ are similar, then they have the same characteristic polynomial.
Why? Suppose $A=C B C^{-1}$.

$$
\begin{aligned}
A-\lambda I & =C B C^{-1}-\lambda I \\
& =C B C^{-1}-C(\lambda I) C^{-1} \\
& =C(B-\lambda I) C^{-1}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\operatorname{det}(A-\lambda I) & =\operatorname{det}\left(C(B-\lambda I) C^{-1}\right) \\
& =\operatorname{det}(C) \operatorname{det}(B-\lambda I) \operatorname{det}\left(C^{-1}\right) \\
& =\operatorname{det}(B-\lambda I),
\end{aligned}
$$

because $\operatorname{det}\left(C^{-1}\right)=\operatorname{det}(C)^{-1}$.

Consequence: similar matrices have the same eigenvalues! (But different eigenvectors in general.)

## Similarity

## Warning

1. Matrices with the same eigenvalues need not be similar. For instance,

$$
\left(\begin{array}{ll}
2 & 1 \\
0 & 2
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right)
$$

both only have the eigenvalue 2, but they are not similar.
2. Similarity has nothing to do with row equivalence. For instance,

$$
\left(\begin{array}{ll}
2 & 1 \\
0 & 2
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

are row equivalent, but they have different eigenvalues.

## Summary

We did two different things today.
First we talked about characteristic polynomials:

- We learned to find the eigenvalues of a matrix by computing the roots of the characteristic polynomial $p(\lambda)=\operatorname{det}(A-\lambda I)$.
- For a $2 \times 2$ matrix $A$, the characteristic polynomial is just

$$
p(\lambda)=\lambda^{2}-\operatorname{Tr}(A) \lambda+\operatorname{det}(A)
$$

- The algebraic multiplicity of an eigenvalue is its multiplicity as a root of the characteristic polynomial.

Then we talked about similar matrices:

- Two square matrices $A, B$ of the same size are similar if there is an invertible matrix $C$ such that $A=C B C^{-1}$.
- Geometrically, similar matrices $A$ and $B$ do the same thing, except $B$ operates on the coordinate system $\mathcal{B}$ defined by the columns of $C$ :

$$
B[x]_{\mathcal{B}}=[A x]_{\mathcal{B}}
$$

- This is useful when we can find a similar matrix $B$ which is simpler than $A$ (e.g., a diagonal matrix).

