Section 6.4

The Gram-Schmidt Process

Motivation: Best Approximation

Suppose you measure a data point x which you know for theoretical reasons must lie on a subspace W.

Due to measurement error, though, the measured x is not actually in W. Best approximation: y is the *closest* point to x on W.

How do you know that y is the closest point? The vector from y to x is orthogonal to W: it is in the *orthogonal complement* W^{\perp} .

Note x = y + (x - y), where y is in W and x - y is in W^{\perp} . Last time we called this the *orthogonal decomposition* of x:

$$x = x_W + x_{W^{\perp}}$$
 $x_W = y$ $x_{W^{\perp}} = x - y$.

Orthogonal Decomposition

Review

Recall: If W is a subspace of \mathbb{R}^n , its **orthogonal complement** is

$$W^{\perp} = \{ v \text{ in } \mathbf{R}^n \mid v \text{ is perpendicular to every vector in } W \}$$

Theorem

Every vector x in \mathbf{R}^n can be written as

$$x = x_W + x_{W^{\perp}}$$

for unique vectors x_W in W and $x_{W^{\perp}}$ in W^{\perp} .

The equation $x = x_W + x_{W^{\perp}}$ is called the **orthogonal decomposition** of x(with respect to W).

The vector x_W is the closest vector to x on W.

How do you compute x_W ? (Note $x_{W^{\perp}} = x - x_W$.)

Recall: a set of nonzero vectors $\{u_1, u_2, \dots, u_m\}$ is **orthogonal** if $u_i \cdot u_j = 0$ when $i \neq j$: each vector is perpendicular to the others.

Definition

Let W be a subspace of \mathbb{R}^n , and let $\{u_1, u_2, \dots, u_m\}$ be an *orthogonal* basis for W. The **orthogonal projection** of a vector x onto W is

$$\left[\operatorname{proj}_{W}(x)\stackrel{\mathrm{def}}{=} \sum_{i=1}^{m} \frac{x \cdot u_{i}}{u_{i} \cdot u_{i}} u_{i} = \frac{x \cdot u_{1}}{u_{1} \cdot u_{1}} u_{1} + \frac{x \cdot u_{2}}{u_{2} \cdot u_{2}} u_{2} + \dots + \frac{x \cdot u_{n}}{u_{n} \cdot u_{n}} u_{n}\right]$$

[interactive]

Let x be a vector and let $x = x_W + x_{W^{\perp}}$ be its orthogonal decomposition with respect to a subspace W. The following vectors are the same:

- ► XW
- ightharpoonup proj_W(x)
- ▶ The closest vector to *x* on *W*

Orthogonal Projection onto a Line

The formula for orthogonal projections is simple when W is a line.

Let $L = \text{Span}\{u\}$ be a line in \mathbb{R}^n , and let x be in \mathbb{R}^n . The orthogonal projection of x onto L is the point

$$\operatorname{proj}_{L}(x) = \frac{x \cdot u}{u \cdot u} u.$$

Example: Compute the orthogonal projection of $x = \binom{-6}{4}$ onto the line L spanned by $u = \binom{3}{2}$.

$$y = \text{proj}_L(x) = \frac{x \cdot u}{u \cdot u} u = \frac{-18 + 8}{9 + 4} \begin{pmatrix} 3 \\ 2 \end{pmatrix} = -\frac{10}{13} \begin{pmatrix} 3 \\ 2 \end{pmatrix}.$$

Orthogonal Projections Properties

We can think of orthogonal projection as a transformation:

$$\operatorname{proj}_W \colon \mathbf{R}^n \longrightarrow \mathbf{R}^n \qquad x \mapsto \operatorname{proj}_W(x).$$

Theorem

Let W be a subspace of \mathbb{R}^n .

- 1. $proj_W$ is a *linear* transformation.
- 2. For every x in W, we have $proj_W(x) = x$.
- 3. For every x in W^{\perp} , we have $\operatorname{proj}_{W}(x) = 0$.
- 4. The range of proj_W is W and the null space of proj_W is W^{\perp} .

Let W be a subspace with orthogonal basis $\mathcal{B} = \{u_1, u_2, \dots, u_m\}$.

For x in W we have $proj_W(x) = x$, so

$$x = \operatorname{proj}_{W}(x) = \sum_{i=1}^{m} \frac{x \cdot u_{i}}{u_{i} \cdot u_{i}} u_{i} = \frac{x \cdot u_{1}}{u_{1} \cdot u_{1}} u_{1} + \frac{x \cdot u_{2}}{u_{2} \cdot u_{2}} u_{2} + \dots + \frac{x \cdot u_{n}}{u_{n} \cdot u_{n}} u_{n}$$

$$\implies [x]_{\mathcal{B}} = \left(\frac{x \cdot u_{1}}{u_{1} \cdot u_{1}}, \frac{x \cdot u_{2}}{u_{2} \cdot u_{2}}, \dots, \frac{x \cdot u_{m}}{u_{m} \cdot u_{m}}\right). \quad [interactive]$$

A Non-Orthogonal Basis

Important: Orthogonal projections require an orthogonal basis!

Non-Example: Consider the basis $\mathcal{B} = \{v_1, v_2\}$ of \mathbb{R}^2 , where

$$v_1 = \begin{pmatrix} 2 \\ -1/2 \end{pmatrix} \quad v_2 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}.$$

This is not orthogonal: $\binom{2}{-1/2} \cdot \binom{1}{2} = 1 \neq 0$.

Let's try to compute $x = \text{proj}_{\mathbb{R}^2}(x)$ for $x = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ using the basis $\{v_1, v_2\}$:

$$x = \text{proj}_{\mathbb{R}^2}(x) = \frac{x \cdot v_1}{v_1 + v_2} v_1 + \frac{x \cdot v_2}{v_2 + v_3} v_2 = \frac{3/2}{17/4} \begin{pmatrix} 2 \\ -1/2 \end{pmatrix} + \frac{3}{5} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 111/85 \\ 87/85 \end{pmatrix}$$

This does not work!

[interactive] (compare [orthogonal basis])

Recap

All of the procedures we learned in §§6.2–6.3 require an *orthogonal* basis $\{u_1,u_2,\ldots,u_m\}$.

Finding the orthogonal projection of a vector x onto the span W of u_1, u_2, \ldots, u_m :

$$\operatorname{proj}_{W}(x) = \sum_{i=1}^{m} \frac{x \cdot u_{i}}{u_{i} \cdot u_{i}} u_{i}.$$

Finding the orthogonal decomposition of x:

$$x = \operatorname{proj}_W(x) + x_{W^{\perp}}.$$

► Finding the *B*-coordinates of *x*:

$$[x]_{\mathcal{B}} = \left(\frac{x \cdot u_1}{u_1 \cdot u_1}, \frac{x \cdot u_2}{u_2 \cdot u_2}, \dots, \frac{x \cdot u_m}{u_m \cdot u_m}\right).$$

Problem: What if your basis isn't orthogonal?

Solution: The Gram-Schmidt process: take any basis and make it orthogonal.

The Gram-Schmidt Process

Let $\{v_1, v_2, \dots, v_m\}$ be a basis for a subspace W of \mathbb{R}^n . Define:

- 1. $u_1 = v_1$
- 2. $u_2 = v_2 \text{proj}_{\text{Span}\{u_1\}}(v_2)$ $= v_2 \frac{v_2 \cdot u_1}{u_1 \cdot u_1} u_1$
- 3. $u_3 = v_3 \text{proj}_{\text{Span}\{u_1, u_2\}}(v_3)$ $= v_3 \frac{v_3 \cdot u_1}{u_1 \cdot u_1} u_1 \frac{v_3 \cdot u_2}{u_2 \cdot u_2} u_2$

1

Procedure

m.
$$u_m = v_m - \text{proj}_{\text{Span}\{u_1, u_2, ..., u_{m-1}\}}(v_m) = v_m - \sum_{i=1}^{m-1} \frac{v_m \cdot u_i}{u_i \cdot u_i} u_i$$

Then $\{u_1, u_2, \dots, u_m\}$ is an *orthogonal* basis for the same subspace W.

Remark

In fact, for every i between 1 and m, the set $\{u_1, u_2, \ldots, u_i\}$ is an orthogonal basis for $\text{Span}\{v_1, v_2, \ldots, v_i\}$.

The Gram–Schmidt Process

Find an orthogonal basis $\{u_1, u_2\}$ for $W = \text{Span}\{v_1, v_2\}$, where

$$v_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$
 and $v_2 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$.

Run Gram-Schmidt:

1.
$$u_1 = v_1$$
 2. $u_2 = v_2 - \frac{v_2 \cdot u_1}{u_1 \cdot u_1} u_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} - \frac{2}{2} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$.

Why does this work?

- First we take $u_1 = v_1$.
- Now we're sad because $u_1 \cdot v_2 \neq 0$, so we can't take $u_2 = v_2$.
- ▶ Fix: let $L_1 = \text{Span}\{u_1\}$, and let $u_2 = (v_2)_{L_1^{\perp}} = v_2 \text{proj}_{L_1}(v_2)$.
- ▶ By construction, $u_1 \cdot u_2 = 0$, because $L_1 \perp u_2$.

 $L_1 \perp u_2$. Important: Span $\{u_1, u_2\} = \text{Span}\{v_1, v_2\} = W$: this is an *orthogonal* basis for the *same* subspace.

The Gram–Schmidt Process Three vectors

Find an orthogonal basis $\{u_1, u_2, u_3\}$ for $W = \text{Span}\{v_1, v_2, v_3\} = \mathbb{R}^3$, where

$$v_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \qquad v_2 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \qquad v_3 = \begin{pmatrix} 3 \\ 1 \\ 1 \end{pmatrix}.$$

Run Gram-Schmidt:

1.
$$u_1 = v_1$$

2.
$$u_2 = v_2 - \frac{v_2 \cdot u_1}{u_1 \cdot u_1} u_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} - \frac{2}{2} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

3.
$$u_3 = v_3 - \frac{v_3 \cdot u_1}{u_1 \cdot u_1} u_1 - \frac{v_3 \cdot u_2}{u_2 \cdot u_2} u_2$$

$$= \begin{pmatrix} 3 \\ 1 \\ 1 \end{pmatrix} - \frac{4}{2} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} - \frac{1}{1} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$$

Important: Span $\{u_1, u_2, u_3\}$ = Span $\{v_1, v_2, v_3\}$ = W: this is an *orthogonal* basis for the *same* subspace.

The Gram-Schmidt Process

Three vectors, continued

$$v_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \ v_2 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \ v_3 = \begin{pmatrix} 3 \\ 1 \\ 1 \end{pmatrix} \xrightarrow{\mathsf{G-S}} u_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \ u_2 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, \ u_3 = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$$

Why does this work?

- ▶ Once we have u_1 and u_2 , then we're sad because v_3 is not orthogonal to u_1 and u_2 .
- Fix: let $W_2 = \text{Span}\{u_1, u_2\}$, and let $u_3 = (v_3)_{W_2^{\perp}} = v_3 \text{proj}_{W_3}(u_3)$.
- ▶ By construction, $u_1 \cdot u_3 = 0 = u_2 \cdot u_3$ because $W_2 \perp u_3$.

Check:

$$u_1 \cdot u_2 = 0$$

$$u_1 \cdot u_3 = 0$$

$$u_2 \cdot u_3 = 0$$

The Gram-Schmidt Process

Three vectors in R4

Find an orthogonal basis $\{u_1, u_2, u_3\}$ for $W = \text{Span}\{v_1, v_2, v_3\}$, where

$$v_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} \qquad v_2 = \begin{pmatrix} -1 \\ 4 \\ 4 \\ -1 \end{pmatrix} \qquad v_3 = \begin{pmatrix} 4 \\ -2 \\ -2 \\ 0 \end{pmatrix}.$$

Run Gram-Schmidt:

1.
$$u_1 = v_1$$

2.
$$u_2 = v_2 - \frac{v_2 \cdot u_1}{u_1 \cdot u_1} u_1 = \begin{pmatrix} -1\\4\\4\\-1 \end{pmatrix} - \frac{6}{4} \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix} = \begin{pmatrix} -5/2\\5/2\\5/2\\-5/2 \end{pmatrix}$$

3.
$$u_3 = v_3 - \frac{v_3 \cdot u_1}{u_1 \cdot u_1} u_1 - \frac{v_3 \cdot u_2}{u_2 \cdot u_2} u_2$$

$$= \begin{pmatrix} 4 \\ -2 \\ -2 \\ 0 \end{pmatrix} - \frac{0}{24} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} - \frac{-20}{25} \begin{pmatrix} -5/2 \\ 5/2 \\ 5/2 \\ -5/2 \end{pmatrix} = \begin{pmatrix} 2 \\ 0 \\ 0 \\ -2 \end{pmatrix}$$

Poll

What happens if you try to run Gram–Schmidt on a linearly dependent set of vectors $\{v_1, v_2, \dots, v_m\}$?

- A. You get an inconsistent equation.
- B. For some i you get $u_i = u_{i-1}$.
- C. For some i you get $u_i = 0$.
- D. You create a rift in the space-time continuum.

If $\{v_1, v_2, \dots, v_m\}$ is linearly dependent, then some v_i is in $Span\{v_1, v_2, \dots, v_{i-1}\} = Span\{u_1, u_2, \dots, u_{i-1}\}$.

This means

$$egin{aligned} v_i &= \mathsf{proj}_{\mathsf{Span}\{u_1,u_2,\ldots,u_{i-1}\}}(v_i) \ &\Longrightarrow u_i &= v_i - \mathsf{proj}_{\mathsf{Span}\{u_1,u_2,\ldots,u_{i-1}\}}(v_i) = 0. \end{aligned}$$

In this case, you can simply discard u_i and v_i and continue: so Gram–Schmidt produces an orthogonal basis from any spanning set!

Summary

- ▶ We like orthogonal bases because they let us compute orthogonal projections.
- ► The Gram—Schmidt process turns an arbitrary basis into an orthogonal basis.