Math 1553 Supplement, §1.4 and §1.5
Solutions

Problem 1 uses the same widgets and gizmos class from our 1.4 and 1.5 worksheet.
The professor in your widgets and gizmos class is trying to decide between three
different grading schemes for computing your final course grade. The schemes are
based on homework (HW), quiz grades (Q), midterms (M), and a final exam (F).
The three schemes can be described by the following matrix A:

HW Q M F

Scheme1l /0.1 0.1 0.5 0.3
Scheme2 | 0.1 0.1 04 0.4
Scheme 3 \ 0.1 0.1 0.6 0.2

Suppose that you have a score of x; on homework, x, on quizzes, x5 on midterms,
and x, on the final, with potential final course grades of b,, b,, bs.

a) In the worksheet for 1.4 and 1.5, you wrote the matrix equation Ax = b to
b,
relate your final grades to your scores. Keeping b = (bz) as a general vector,
by
write the augmented matrix (A| b).

b) Row reduce this matrix until you reach row echelon form.

¢) Looking at the final matrix in (b), what equation in terms of b,, b,, b; must be
satisfied in order for Ax = b to have a solution?

d) The answer to (c) also defines the span of the columns of A. Describe the span
geometrically.

e) Solve the equation in (c) for b;. Looking at this equation, is it possible for b,
to be the largest of by, b,, b3? In other words, is it ever possible for the grade
under Scheme 1 to be the highest of the three final course grades? Why or
why not? Which scheme would you argue for?

Solution.
0.1 0.1 0.5 0.3|b,
a) [ 0.1 01 04 04]b,
0.1 0.1 0.6 0.2 by

b) Here is the row reduction:

0.1 01 05 03]b;\ ' (01 01 05 03 b,
0.1 0.1 0.4 0.4]|by | wwwwwwors 0 0 —0.1 0.1|by,—b

0.1 0.1 0.6 0.2]bs 0 0 01 —0.1|bs—b,

R,=R,+R, (01 01 05 03 b,
0 0 0 0 b2+ b3_2b1

1

)



2 SOLUTIONS

R;=R;x10
R2:1R2x1(—10) 115 3 10b,
s |00 1 —1| 10b, —10b,
R, =R,—5R, 1 1 0 8|—40b,+50b,
wwoensnwonenins [ Q01 —1| 10b, — 10b,

¢) The last row in the row-reduced matrix translates into 0 = b,+b;—2b,. Hence

the system of equations is inconsistent unless | b, + b; —2b; =0 |.

d) This is the 2-plane in R® given by —2b; + b, + by = 0.

e) Rearranging, this is the set of points (by, by, b;) where b; = 3(b, + bs), i.e.,
where b, is the average of b, and b;. Hence it is impossible for b; to be larger
than both b, and b,.

You should argue for the second grading scheme if your final grade was
higher than your midterm grade; otherwise you should argue for the third.

a) True or false (justify your answer):
A matrix equation Ax = b is consistent if A has a pivot in every column.

b) Suppose A is a 3 x 3 matrix and there is a vector y in R® so that Ax = y does
not have a solution. Is it possible that there is a z in R® so that the equation
Ax = z has a unique solution? Justify your answer.

Solution.

10 0
a) False. For example, the system (O 1) (xl) = (O) has no solution, even

Xo

00 1
10
though the matrix | O 1 | has a pivot in every column. However, the system
00

is guaranteed to be consistent if A has a pivot in every row.

b) No. Since Ax = y is inconsistent for some y in R3, the big theorem from 1.4
implies that A has at least one row without a pivot, so A has at most 2 pivots.
Therefore, at least one of the three columns of A will not have a pivot, so if
an equation Ax = g is consistent, the system will have a free variable and thus
infinitely many solutions.



MATH 1553 SUPPLEMENT, §1.4 AND §1.5

Suppose the solution set of a certain system of linear equations is given by

Write the solution set in parametric vector form. Describe the set geometrically.

Solution.

In parametric vector form, the solutions are given by
b S+4x, 5 4
X3 X3 0 1

5 4
This is the line in R® through (—2) parallel to Span { (—7) }
0 1



