Math 1553 Supplement §1.7, 1.8, 1.9

1. Justify why each of the following true statements can be checked without row reduction.
a) $\left\{\left(\begin{array}{l}3 \\ 3 \\ 4\end{array}\right),\left(\begin{array}{l}0 \\ 0 \\ \pi\end{array}\right),\left(\begin{array}{c}0 \\ \sqrt{2} \\ 0\end{array}\right)\right\}$ is linearly independent.
b) $\left\{\left(\begin{array}{l}3 \\ 3 \\ 4\end{array}\right),\left(\begin{array}{c}0 \\ 10 \\ 20\end{array}\right),\left(\begin{array}{l}0 \\ 5 \\ 7\end{array}\right)\right\}$ is linearly independent.
c) $\left\{\left(\begin{array}{l}3 \\ 3 \\ 4\end{array}\right),\left(\begin{array}{c}0 \\ 10 \\ 20\end{array}\right),\left(\begin{array}{l}0 \\ 5 \\ 7\end{array}\right),\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)\right\}$ is linearly dependent.
2. Let A be a 3×4 matrix with column vectors $v_{1}, v_{2}, v_{3}, v_{4}$. Suppose that $v_{2}=2 v_{1}-3 v_{4}$. Find one non-trivial solution to the equation $A x=0$.
3. Which of the following transformations T are onto? Which are one-to-one? If the transformation is not onto, find a vector not in the range. If the matrix is not one-to-one, find two vectors with the same image.
a) The transformation $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{2}$ defined by $T(x, y, z)=(0, x)$.
b) JUST FOR FUN: Consider $T:($ Smooth functions) \rightarrow (Smooth functions) given by $T(f)=f^{\prime}$ (the derivative of f). Then T is not a transformation from any \mathbf{R}^{n} to \mathbf{R}^{m}, but it is still linear in the sense that for all smooth f and g and all scalars c (by properties of differentiation we learned in Calculus 1):

$$
\begin{array}{cc}
T(f+g)=T(f)+T(g) & \left((f+g)^{\prime}=f^{\prime}+g^{\prime}\right) \\
T(c f)=c T(f) & (c f)^{\prime}=c f^{\prime} .
\end{array}
$$

Is T one-to-one?
4. For each matrix A, describe what the associated matrix transformation T does to \mathbf{R}^{3} geometrically.

$$
\text { a) }\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \quad \text { b) }\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) .
$$

