Math 1553 Supplement §2.1, 2.2, 2.3

Solutions

1. Find all matrices B that satisfy

$$
\left(\begin{array}{cc}
1 & -3 \\
-3 & 5
\end{array}\right) B=\left(\begin{array}{cc}
-3 & -11 \\
1 & 17
\end{array}\right)
$$

Solution.

B must have two rows and two columns for the above to compute, so $B=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$. We calculate

$$
\left(\begin{array}{cc}
1 & -3 \\
-3 & 5
\end{array}\right) B=\left[\begin{array}{cc}
a-3 c & b-3 d \\
-3 a+5 c & -3 b+5 d
\end{array}\right]
$$

Setting this equal to $\left(\begin{array}{cc}-3 & -11 \\ 1 & 17\end{array}\right)$ gives us

$$
\begin{gathered}
a-3 c=-3 \\
-3 a+5 c=1
\end{gathered}
$$

$$
\text { (solving gives us } a=3, c=2 \text {) }
$$

$$
b-3 d=-11
$$

$$
-3 b+5 d=17
$$

(solving gives us $b=1, d=4$).
Therefore, $B=\left(\begin{array}{ll}3 & 1 \\ 2 & 4\end{array}\right)$.
2. a) Fill in: A and B are invertible $n \times n$ matrices, then the inverse of $A B$ is \qquad .
b) If the columns of an $n \times n$ matrix Z are linearly independent, is Z necessarily invertible? Justify your answer.
c) If A and B are $n \times n$ matrices and $A B x=0$ has a unique solution, does $A x=0$ necessarily have a unique solution? Justify your answer.

Solution.

a) $(A B)^{-1}=B^{-1} A^{-1}$.
b) Yes. The transformation $x \rightarrow Z x$ is one-to-one since the columns of Z are linearly independent. Thus Z has a pivot in all n columns, so Z has n pivots. Since Z also has n rows, this means that Z has a pivot in every row, so $x \rightarrow Z x$ is onto. Therefore, Z is invertible.

Alternatively, since Z is an $n \times n$ matrix whose columns are linearly independent, the Invertible Matrix Theorem (2.3) in 2.3 says that Z is invertible.
c) Yes. Since $A B$ is an $n \times n$ matrix and $A B x=0$ has a unique solution, the Invertible Matrix Theorem says that $A B$ is invertible. Note A is invertible and its inverse is $B(A B)^{-1}$, since these are square matrices and

$$
A\left(B(A B)^{-1}\right)=A B(A B)^{-1}=I_{n} .
$$

Since A is invertible, $A x=0$ has a unique solution by the Invertible Matrix Theorem.

