Math 1553 Worksheet §2.1, 2.2, 2.3 Solutions

- **1.** If *A* is a 3×5 matrix and *B* is a 3×2 matrix, which of the following are defined?
 - **a)** *A*−*B*
 - **b)** *AB*
 - c) $A^T B$
 - **d)** *A*²

Solution.

Only (c).

A-B is nonsense. In order for A-B to be defined, A and B need to have the same number of rows and same number of columns as each other.

AB is undefined since the number of columns of *A* does not equal the number of rows of *B*.

 A^T is 5 × 3 and *B* is 3 × 2, so $A^T B$ is a 5 × 2 matrix.

 A^2 is nonsense (can't do 3 × 5 times 3 × 5).

- **2.** True or false (justify your answer). Answer true if the statement is *always* true. Otherwise, answer false.
 - a) If A is an $n \times n$ matrix and the equation Ax = b has at least one solution for each b in \mathbb{R}^n , then the solution is *unique* for each b in \mathbb{R}^n .
 - **b)** If *A* is an $n \times n$ matrix and every vector in \mathbb{R}^n can be written as a linear combination of the columns of *A*, then *A* is invertible.
 - c) If A and B are invertible $n \times n$ matrices, then A + B is invertible and

$$(A+B)^{-1} = A^{-1} + B^{-1}.$$

- **d)** If *A* is an $m \times n$ matrix and *B* is an $n \times p$ matrix, then each column of *AB* is a linear combination of the columns of *A*.
- e) If AB = BC and B is invertible, then A = C.

Solution.

- a) True. The first part says the transformation $T : \mathbb{R}^n \to \mathbb{R}^n$ given by T(x) = Ax is onto. Since *A* is $n \times n$, this is the same as saying *A* is invertible, so *T* is one-to-one and onto. Therefore, the equation Ax = b has exactly one solution for each *b* in \mathbb{R}^n .
- **b)** True. If the columns of *A* span \mathbb{R}^n , then *A* is invertible by the Invertible Matrix Theorem. We can also see this directly without quoting the IMT:

If the columns of *A* span \mathbb{R}^n , then *A* has *n* pivots, so *A* has a pivot in each row and column, hence its associated transformation T(x) = Ax is one-to-one and onto and thus invertible. Therefore, *A* is invertible.

- c) False. A + B might not be invertible in the first place. For example, if $A = I_2$ and $B = -I_2$ then A + B = 0 which is not invertible. Even in the case when A + B is invertible, it still might not be true that $(A + B)^{-1} = A^{-1} + B^{-1}$. For example, $(I_2 + I_2)^{-1} = (2I_2)^{-1} = \frac{1}{2}I_2$, whereas $(I_2)^{-1} + (I_2)^{-1} = I_2 + I_2 = 2I_2$.
- **d)** True. If we let v_1, \ldots, v_p be the columns of *B*, then $AB = (Av_1 \ Av_2 \ \ldots \ Av_p)$, where Av_i is in the column span of *A* for every *i* (this is part of the definition of matrix multiplication of vectors).
- e) False. It is not easy to come up with an example that shows it is false, but algebraically, we see that we need to multiply by B^{-1} on the right side of each equation to cancel the *B* in the equation *AB*:

$$AB = BC \qquad AB(B^{-1}) = BC(B^{-1}) \qquad AI_n = BCB^{-1} \qquad A = BCB^{-1}$$

Here is an example demonstrating that false is the correct answer.

If $A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, and $C = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$, then *B* is invertible (in fact $B = B^{-1}$) and $A \neq C$ but

$$AB = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$
 and $BC = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$.

3. Suppose *A* is an invertible 3×3 matrix and

$$A^{-1}e_1 = \begin{pmatrix} 4\\1\\0 \end{pmatrix}, \quad A^{-1}e_2 = \begin{pmatrix} 3\\2\\0 \end{pmatrix}, \quad A^{-1}e_3 = \begin{pmatrix} 0\\0\\1 \end{pmatrix}.$$

Find A.

Solution.

The columns of A^{-1} are

$$(A^{-1}e_1 \ A^{-1}e_2 \ A^{-1}e_3),$$
 so $A^{-1} = \begin{pmatrix} 4 & 3 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$

A is the inverse of A^{-1} , so we use the method from 2.2 to find $(A^{-1})^{-1}$. Row-reducing $(A^{-1} | I)$ eventually gives us

$$\begin{pmatrix} 4 & 3 & 0 & | & 1 & 0 & 0 \\ 1 & 2 & 0 & | & 0 & 1 & 0 \\ 0 & 0 & 1 & | & 0 & 0 & 1 \end{pmatrix} \xrightarrow{\text{RREF}} \begin{pmatrix} 1 & 0 & 0 & | & \frac{2}{5} & -\frac{3}{5} & 0 \\ 0 & 1 & 0 & | & -\frac{1}{5} & \frac{4}{5} & 0 \\ 0 & 0 & 1 & | & 0 & 0 & 1 \end{pmatrix},$$
$$A = \begin{pmatrix} \frac{2}{5} & -\frac{3}{5} & 0 \\ -\frac{1}{5} & \frac{4}{5} & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

SO