Math 1553 Supplement §2.8, 2.9

1. Find bases for the column space and the null space of

$$
A=\left(\begin{array}{ccccc}
0 & 1 & -3 & 1 & 0 \\
1 & -1 & 8 & -7 & 1 \\
-1 & -2 & 1 & 4 & -1
\end{array}\right)
$$

2. Which of the following are subspaces of \mathbf{R}^{4} ? Why or why not?
(a) $V=\left\{\left(\begin{array}{l}x \\ y \\ z \\ w\end{array}\right)\right.$ in $\mathbf{R}^{4} \mid x+y=0$ and $\left.z+w=0\right\} \quad$ (b) $W=\left\{\left(\begin{array}{l}x \\ y \\ z \\ w\end{array}\right)\right.$ in $\left.\mathbf{R}^{4} \mid x y-z w=0\right\}$
3. For (a), answer "YES" if the statement is always true, "NO" if it is always false, and "MAYBE" otherwise.
a) If A is an $m \times n$ matrix and $\operatorname{Nul}(A)=\mathbf{R}^{n}$, then $\operatorname{Col}(A)=\{0\}$. YES NO MAYBE
b) Give an example of 2×2 matrix whose column space is the same as its null space.
4. Let $\mathcal{B}=\left\{\binom{-2}{1},\binom{3}{1}\right\}$, and suppose $[x]_{\mathcal{B}}=\binom{-1}{3}$. Find x, and draw a picture which clearly represents x as a linear combination of $b_{1}=\binom{-2}{1}$ and $b_{2}=\binom{3}{1}$.
5. Go back to the 2.8-2.9 worksheet, \#3: Find a vector b_{3} such that $\left\{b_{1}, b_{2}, b_{3}\right\}$ is a basis of \mathbf{R}^{3}.
