Math 1553 Worksheet §2.8, 2.9

1. Let $A=\left(\begin{array}{lll}1 & 3 & 2 \\ 2 & 6 & 4\end{array}\right)$ and let T_{A} be the corresponding linear transformation, defined by $T_{A}(v)=A v$.
a) Find a basis for the nullspace of A and roughly sketch $\operatorname{Nul} A$.
b) Using the previous part, determine if T_{A} is one-to-one.
c) Find a basis for the column space of A and draw a picture of $\operatorname{Col} A$.
d) Using the previous part, determine if T_{A} is onto.
e) Given that we know the nullspace and column space, we can describe the transformation T_{A} as follows:
The transformation T_{A} squashes $\mathbf{R} \square$ to a \square by crushing parallel \square to points. Its range is a \square in $\mathbf{R} \square$.

Solution.

a) We need to find the parametric vector form for the solutions of $A x=0$. After row reducing, we get the matrix $\left(\begin{array}{lll}1 & 3 & 2 \\ 0 & 0 & 0\end{array}\right)$. So we have $x_{1}=-3 x_{2}-2 x_{3}$, $x_{2}=x_{2}, x_{3}=x_{3}$ which gives

$$
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=x_{2}\left(\begin{array}{c}
-3 \\
1 \\
0
\end{array}\right)+x_{3}\left(\begin{array}{c}
-2 \\
0 \\
1
\end{array}\right) .
$$

So a basis for the nullspace is $\left\{\left(\begin{array}{c}-3 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{c}-2 \\ 0 \\ 1\end{array}\right)\right\}$.
The picture is a plane is \mathbf{R}^{3}.
b) T_{A} is not one-to-one, because the nullspace is bigger than just the zero vector.
c) Only the first column of A is a pivot column, so a basis for the columns space is the first column of $A:\binom{1}{2}$.

The picture is the line $y=2 x$ in \mathbf{R}^{2}.
d) T_{A} is not onto, since the columns space is only a line in \mathbf{R}^{2}, and not all of \mathbf{R}^{2}.
e) The transformation T_{A} squashes R^{3} [domain] to a line [column space] by crushing parallel planes [nullspace] to points. Its range is a line [column space] in \mathbf{R}^{2} [codomain].
2. Answer "YES" if the statement is always true, "NO" if it is always false, and "MAYBE" otherwise.
a) If A is a 3×100 matrix of rank 2 , then $\operatorname{dim}(\operatorname{Nul} A)=97$.

YES NO MAYBE
b) If A is an $m \times n$ matrix and $A x=0$ has only the trivial solution, then the columns of A form a basis for \mathbf{R}^{m}.

YES NO MAYBE

Solution.

a) No. By the Rank Theorem, $\operatorname{rank}(A)+\operatorname{dim}(\operatorname{Nul} A)=100$, $\operatorname{so} \operatorname{dim}(\operatorname{Nul} A)=98$.
b) Maybe. If $A x=0$ has only the trivial solution and $m=n$, then A is invertible, so the columns of A are linearly independent and span \mathbf{R}^{m}.
If $m>n$ then the statement is false. For example, $A=\left(\begin{array}{ll}1 & 0 \\ 0 & 1 \\ 0 & 0\end{array}\right)$ has only the trivial solution for $A x=0$, but its column space is a 2-dimensional subspace of \mathbf{R}^{3}.
3. Consider the following vectors in \mathbf{R}^{3} :

$$
b_{1}=\left(\begin{array}{l}
2 \\
2 \\
2
\end{array}\right) \quad b_{2}=\left(\begin{array}{l}
1 \\
4 \\
3
\end{array}\right) \quad u=\left(\begin{array}{c}
1 \\
10 \\
7
\end{array}\right)
$$

Let $V=\operatorname{Span}\left\{b_{1}, b_{2}\right\}$.
a) Explain why $\mathcal{B}=\left\{b_{1}, b_{2}\right\}$ is a basis for V.
b) Determine if u is in V. If so, find $[u]_{\mathcal{B}}$ (the \mathcal{B}-coordinates of u).

Solution.

a) A quick check shows that b_{1} and b_{2} are linearly independent, and we already know they span V, so $\left\{b_{1}, b_{2}\right\}$ is a basis for V.
b) u is in V if and only if $c_{1} b_{1}+c_{2} b_{2}=u$ for some c_{1} and c_{2}, in which case $[u]_{\mathcal{B}}=\binom{c_{1}}{c_{2}}$. We form the augmented matrix $\left(\begin{array}{ll}b_{1} & \left.b_{2} \mid u\right) \text { and solve: }\end{array}\right.$
$\left(\begin{array}{rr|r}2 & 1 & 1 \\ 2 & 4 & 10 \\ 2 & 3 & 7\end{array}\right) \xrightarrow[R_{3}=R_{3}-R_{1}]{R_{2}=R_{2}-R_{1}}\left(\begin{array}{ll|l}2 & 1 & 1 \\ 0 & 3 & 9 \\ 0 & 2 & 6\end{array}\right) \xrightarrow[R_{2}=R_{2} / 3]{R_{3}=R_{3}-\frac{2}{3} R_{2}}\left(\begin{array}{ll|l}2 & 1 & 1 \\ 0 & 1 & 3 \\ 0 & 0 & 0\end{array}\right) \xrightarrow[\text { then } R_{1}=R_{1} / 2]{R_{1}=R_{1}-R_{2}}\left(\begin{array}{rr|r}1 & 0 & -1 \\ 0 & 1 & 3 \\ 0 & 0 & 0\end{array}\right)$. We found $c_{1}=-1$ and $c_{2}=3$. This means $-b_{1}+3 b_{2}=u$, so u is in $\operatorname{Span}\left\{b_{1}, b_{2}\right\}$ and $[u]_{\mathcal{B}}=\binom{-1}{3}$.

