## Math 1553 Worksheet §2.8, 2.9

1. Let $A=\left(\begin{array}{lll}1 & 3 & 2 \\ 2 & 6 & 4\end{array}\right)$ and let $T_{A}$ be the corresponding linear transformation, defined by $T_{A}(v)=A v$.
a) Find a basis for the nullspace of $A$ and roughly sketch $\operatorname{Nul} A$.
b) Using the previous part, determine if $T_{A}$ is one-to-one.
c) Find a basis for the column space of $A$ and draw a picture of $\operatorname{Col} A$.
d) Using the previous part, determine if $T_{A}$ is onto.
e) Given that we know the nullspace and column space, we can describe the transformation $T_{A}$ as follows:
The transformation $T_{A}$ squashes $\mathbf{R} \square$ to a $\square$ by crushing parallel $\square$ to points. Its range is a $\square$ in $\mathbf{R} \square$.
2. Answer "YES" if the statement is always true, "NO" if it is always false, and "MAYBE" otherwise.
a) If $A$ is a $3 \times 100$ matrix of rank 2 , then $\operatorname{dim}(\operatorname{Nul} A)=97$.

YES NO MAYBE
b) If $A$ is an $m \times n$ matrix and $A x=0$ has only the trivial solution, then the columns of $A$ form a basis for $\mathbf{R}^{m}$. YES NO MAYBE
3. Consider the following vectors in $\mathbf{R}^{3}$ :

$$
b_{1}=\left(\begin{array}{l}
2 \\
2 \\
2
\end{array}\right) \quad b_{2}=\left(\begin{array}{l}
1 \\
4 \\
3
\end{array}\right) \quad u=\left(\begin{array}{c}
1 \\
10 \\
7
\end{array}\right)
$$

Let $V=\operatorname{Span}\left\{b_{1}, b_{2}\right\}$.
a) Explain why $\mathcal{B}=\left\{b_{1}, b_{2}\right\}$ is a basis for $V$.
b) Determine if $u$ is in $V$. If so, find $[u]_{\mathcal{B}}$ (the $\mathcal{B}$-coordinates of $u$ ).

