Math 1553 Worksheet §2.8, 2.9

1. Let $A = \begin{pmatrix} 1 & 3 & 2 \\ 2 & 6 & 4 \end{pmatrix}$ and let T_A be the corresponding linear transformation, defined by $T_A(v) = Av$.

a) Find a basis for the nullspace of *A* and roughly sketch Nul *A*.

- **b)** Using the previous part, determine if T_A is one-to-one.
- c) Find a basis for the column space of *A* and draw a picture of Col *A*.

- **d)** Using the previous part, determine if T_A is onto.
- e) Given that we know the nullspace and column space, we can describe the transformation T_A as follows:
 The transformation T_A squashes R to a by crushing parallel to points. Its range is a in R.

2. Answer "YES" if the statement is always true, "NO" if it is always false, and "MAYBE" otherwise.

a) If *A* is a 3×100 matrix of rank 2, then dim(Nul*A*) = 97. YES NO MAYBE

b) If *A* is an $m \times n$ matrix and Ax = 0 has only the trivial solution, then the columns of *A* form a basis for \mathbb{R}^m . YES NO MAYBE

3. Consider the following vectors in \mathbf{R}^3 :

$$b_1 = \begin{pmatrix} 2\\2\\2 \end{pmatrix} \qquad b_2 = \begin{pmatrix} 1\\4\\3 \end{pmatrix} \qquad u = \begin{pmatrix} 1\\10\\7 \end{pmatrix}$$

Let $V = \text{Span}\{b_1, b_2\}.$

a) Explain why $\mathcal{B} = \{b_1, b_2\}$ is a basis for *V*.

b) Determine if u is in V. If so, find $[u]_{\mathcal{B}}$ (the \mathcal{B} -coordinates of u).