Math 1553 Supplement §5.3 (with some more practice from §5.2)

For those who want additional practice problems after completing the worksheet, here are some extra practice problems.

1. Let A and B be 3×3 real matrices. Answer yes / no / maybe:
a) If A and B have the same eigenvalues, then A is similar to B.
b) If A is diagonalizable and invertible, then A^{-1} is diagonalizable.
c) If A and B are invertible and A is similar to B, then A^{-1} is similar to B^{-1}.

Solution.

a) Maybe. For example, $\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$ and $\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$ have the same eigenvalues ($\lambda=0$ with alg. multiplicity 2) but are not similar, whereas $\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$ is similar to itself.
b) Yes. If $A=P D P^{-1}$ and A is invertible then its eigenvalues are all nonzero, so the diagonal entries of D are nonzero and thus D is invertible (pivot in every diagonal position). Thus, $A^{-1}=\left(P D P^{-1}\right)^{-1}=\left(P^{-1}\right)^{-1} D^{-1} P^{-1}=P D^{-1} P^{-1}$.
c) Yes. $A=P B P^{-1}$ for some invertible P, so

$$
A^{-1}=\left(P B P^{-1}\right)^{-1}=\left(P^{-1}\right)^{-1} B^{-1} P^{-1}=P B^{-1} P^{-1}
$$

2. Let $A=\left(\begin{array}{rrr}8 & 36 & 62 \\ -6 & -34 & -62 \\ 3 & 18 & 33\end{array}\right)$.

The characteristic polynomial for A is $-\lambda^{3}+7 \lambda^{2}-16 \lambda+12$, and $\lambda-3$ is a factor. Decide if A is diagonalizable. If it is, find an invertible matrix P and a diagonal matrix D such that $A=P D P^{-1}$.

Solution.

By polynomial division,

$$
\frac{-\lambda^{3}+7 \lambda^{2}-16 \lambda+12}{\lambda-3}=-\lambda^{2}+4 \lambda-4=-(\lambda-2)^{2}
$$

Thus, the characteristic poly factors as $-(\lambda-3)(\lambda-2)^{2}$, so the eigenalues are $\lambda_{1}=3$ and $\lambda_{2}=2$.

For $\lambda_{1}=3$, we row-reduce $A-3 I$:

$$
\begin{array}{r}
\left.\left.\left(\begin{array}{ccc}
5 & 36 & 62 \\
-6 & -37 & -62 \\
3 & 18 & 30
\end{array}\right) \xrightarrow\left[\text { (New } R_{1}\right) / 3\right]{R_{1} \leftrightarrow R_{3}}\left(\begin{array}{ccc}
1 & 6 & 10 \\
-6 & -37 & -62 \\
5 & 36 & 62
\end{array}\right) \xrightarrow[R_{3}=R_{3}-5 R_{1}]{\substack{R_{2}=R_{2}+6 R_{1}}} \begin{array}{cccc}
1 & 6 & 10 \\
0 & -1 & -2 \\
0 & 6 & 12
\end{array}\right) \\
\xrightarrow[\text { then } R_{2}=-R_{2}]{R_{3}=R_{3}+6 R_{2}}\left(\begin{array}{ccc}
1 & 6 & 10 \\
0 & 1 & 2 \\
0 & 0 & 0
\end{array}\right) \xrightarrow{R_{1}=R_{1}-6 R_{2}}\left(\begin{array}{ccc}
1 & 0 & -2 \\
0 & 1 & 2 \\
0 & 0 & 0
\end{array}\right) .
\end{array}
$$

Therefore, the solutions to $(A-3 I \mid 0)$ are $x_{1}=2 x_{3}, x_{2}=-2 x_{3}, x_{3}=x_{3}$.

$$
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{c}
2 x_{3} \\
-2 x_{3} \\
x_{3}
\end{array}\right)=x_{3}\left(\begin{array}{c}
2 \\
-2 \\
1
\end{array}\right) . \quad \text { The 3-eigenspace has basis }\left\{\left(\begin{array}{c}
2 \\
-2 \\
1
\end{array}\right)\right\} .
$$

For $\lambda_{2}=2$, we row-reduce $A-2 I$:

$$
\left(\begin{array}{ccc}
6 & 36 & 62 \\
-6 & -36 & -62 \\
3 & 18 & 31
\end{array}\right) \quad \text { rref } \quad\left(\begin{array}{ccc}
1 & 6 & \frac{31}{3} \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) .
$$

The solutions to $\left(\begin{array}{ll}A-2 I & 0\end{array}\right)$ are $x_{1}=-6 x_{2}-\frac{31}{3} x_{3}, x_{2}=x_{2}, x_{3}=x_{3}$.

$$
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{c}
-6 x_{2}-\frac{31}{3} x_{3} \\
x_{2} \\
x_{3}
\end{array}\right)=x_{2}\left(\begin{array}{c}
-6 \\
1 \\
0
\end{array}\right)+x_{3}\left(\begin{array}{c}
-\frac{31}{3} \\
0 \\
1
\end{array}\right) .
$$

The 2-eigenspace has basis $\left\{\left(\begin{array}{c}-6 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{c}-\frac{31}{3} \\ 0 \\ 1\end{array}\right)\right\}$.
Therefore, $A=P D P^{-1}$ where

$$
P=\left(\begin{array}{ccc}
2 & -6 & -\frac{31}{3} \\
-2 & 1 & 0 \\
1 & 0 & 1
\end{array}\right) \quad D=\left(\begin{array}{ccc}
3 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right)
$$

Note that we arranged the eigenvectors in P in order of the eigenvalues 3, 2, 2, so we had to put the diagonals of D in the same order.
3. Give an example of a non-diagonal 2×2 matrix which is diagonalizable but not invertible. Justify your answer.

Solution.

$\left(\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right)$ is not invertible (row of zeros) but is diagonalizable since its has two distinct eigenvalues 0 and 1 (it is triangular, so its diagonals are its eigenvalues)

