Math 1553 Worksheet §5.3 (and some more practice with §5.2)

1. Answer yes / no / maybe. In each case, A is a matrix whose entries are real.
a) If A is a 3×3 matrix with characteristic polynomial $-\lambda(\lambda-5)^{2}$, then the 5eigenspace is 2 -dimensional.
b) If A is an invertible 2×2 matrix, then A is diagonalizable.
c) If A and B are 3×3 matrices and both have eigenvalues $-1,0,1$, then A is similar to B.
d) Suppose A is a 7×7 matrix with four distinct eigenvalues. If one eigenspace has dimension 2, while another eigenspace has dimension 3 , then A must be diagonalizable.

Solution.

a) Maybe. The geometric multiplicity of $\lambda=5$ can be 1 or 2 . For example, the matrix $\left(\begin{array}{ccc}5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 0\end{array}\right)$ has a 5- eigenspace which is 2-dimensional, whereas the matrix $\left(\begin{array}{lll}5 & 1 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 0\end{array}\right)$ has a 5-eigenspace which is 1-dimensional. Both matrices have characteristic polynomial $-\lambda(\lambda-5)^{2}$.
b) Maybe. The identity matrix is invertible and diagonalizable, but the matrix $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ is invertible but not diagonalizable.
c) Yes. In this case, A and B are 3×3 matrices with 3 distinct eigenvalues and thus automatically diagonalizable, and each is similar to $D=\left(\begin{array}{ccc}-1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1\end{array}\right)$. Since A and D are similar, and B and D are similar, it follows that A and B are similar.
$A=P D P^{-1} \quad B=Q D Q^{-1} \quad A=P D P^{-1}=P Q^{-1} B Q P^{-1}=P Q^{-1} B\left(P Q^{-1}\right)^{-1}$.
d) Yes. It is a general fact that every eigenvalue of a matrix has a corresponding eigenspace which is at least 1-dimensional. Given this and the fact that A has four total eigenvalues, we see the sum of dimensions of the eigenspaces of A is at least $2+3+1+1=7$, and in fact must equal 7 since that is the max possible for a 7×7 matrix. Therefore, A has 7 linearly independent eigenvectors and is therefore diagonalizable.
2. Consider the matrix

$$
A=-\frac{1}{5}\left(\begin{array}{ll}
8 & 3 \\
2 & 7
\end{array}\right)
$$

a) Find, draw, and label the eigenspaces of A.

We solve:

$$
\begin{aligned}
0 & =\operatorname{det}(A-\lambda I)=\left(-\frac{8}{5}-\lambda\right)\left(-\frac{7}{5}-\lambda\right)-\left(-\frac{2}{3}\right)\left(-\frac{3}{5}\right)=\frac{56}{25}+3 \lambda+\lambda^{2}-\frac{6}{25} \\
& =\lambda^{2}+3 \lambda+2=(\lambda+2)(\lambda+1), \quad \text { so } \lambda=-2, \quad \lambda=-1 . \\
& (A+2 I \mid 0)=\left(\begin{array}{rr|r}
\frac{2}{5} & -\frac{3}{5} & 0 \\
-\frac{2}{5} & \frac{3}{5} & 0
\end{array}\right) \xrightarrow{\text { RREF }}\left(\begin{array}{rr|r}
1 & -\frac{3}{2} & 0 \\
0 & 0 & 0
\end{array}\right) ;(-2) \text {-eigensp. has basis }\left\{\binom{3 / 2}{1}\right\} . \\
& (A+I \mid 0)=\left(\begin{array}{rr|r}
-\frac{3}{5} & -\frac{3}{5} & 0 \\
-\frac{2}{5} & -\frac{2}{5} & 0
\end{array}\right) \xrightarrow{\text { RREF }}\left(\begin{array}{rr|r}
1 & 1 & 0 \\
0 & 0 & 0
\end{array}\right) ;(-1) \text {-eigensp. has basis }\left\{\binom{1}{-1}\right\} .
\end{aligned}
$$

b) Compute A^{100}.

From our work in (a), we have $A=P D P^{-1}$ where

$$
P=\left(\begin{array}{cc}
3 / 2 & 1 \\
1 & -1
\end{array}\right) \quad \text { and } \quad D=\left(\begin{array}{cc}
-2 & 0 \\
0 & -1
\end{array}\right)
$$

We compute $P^{-1}=\frac{1}{-5 / 2}\left(\begin{array}{cc}-1 & -1 \\ -1 & 3 / 2\end{array}\right)=\frac{1}{5}\left(\begin{array}{cc}2 & 2 \\ 2 & -3\end{array}\right)$.

$$
\begin{aligned}
A^{100} & =P D^{100} P^{-1}=\frac{1}{5}\left(\begin{array}{cc}
3 / 2 & 1 \\
1 & -1
\end{array}\right) \cdot D^{100}\left(\begin{array}{cc}
2 & 2 \\
2 & -3
\end{array}\right) \\
& =\frac{1}{5}\left(\begin{array}{cc}
3 / 2 & 1 \\
1 & -1
\end{array}\right)\left(\begin{array}{cc}
2^{100} & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
2 & 2 \\
2 & -3
\end{array}\right) \\
& =\frac{1}{5}\left(\begin{array}{cc}
3 / 2 & 1 \\
1 & -1
\end{array}\right)\left(\begin{array}{cc}
2 \cdot 2^{100} & 2 \cdot 2^{100} \\
2 & -3
\end{array}\right) \\
& =\frac{1}{5}\left(\begin{array}{cc}
3 \cdot 2^{100}+2 & 3 \cdot 2^{100}-3 \\
2^{101}-2 & 2^{101}+3
\end{array}\right) .
\end{aligned}
$$

