Math 1553 Worksheet §5.5

- **1.** Answer true or false, and justify your answer. In each case, *A* is a matrix whose entries are real.
 - **a)** If *A* is the matrix that implements rotation by 143° in \mathbb{R}^2 , then *A* has no real eigenvalues.
 - **b)** A 3 × 3 matrix can have a non-real complex eigenvalue with multiplicity 2.
 - c) A 3 × 3 matrix can have eigenvalues 3, 5, and 2 + i.

Solution.

- a) True. If A had a real eigenvalue λ , then we would have $Ax = \lambda x$ for some vector x in \mathbb{R}^2 . This means that x would lie on the same line through the origin as the rotation of x by 143°, which is impossible.
- **b)** False. If *c* is a (non-real) complex eigenvalue with multiplicity 2, then its conjugate \overline{c} is an eigenvalue with multiplicity 2 since complex eigenvalues always occur in conjugate pairs. This would mean *A* has a characteristic polynomial of degree 4 or more, which is impossible for a 3×3 matrix.
- c) False. If 2 + i is an eigenvalue then so is its conjugate 2 i.

2. Let $A = \begin{pmatrix} 1 & 2 \\ -2 & 1 \end{pmatrix}$.

- a) Find all eigenvalues and eigenvectors of *A*.
- **b)** Using the eigenvalue with negative imaginary part, write $A = PCP^{-1}$, where *C* is a rotation followed by a scale. Describe what *A* does geometrically.

Solution.

a) The characteristic polynomial is

$$\lambda^2 - \text{Tr}(A)\lambda + \det(A) = \lambda^2 - 2\lambda + 5$$

$$\lambda^2 - 2\lambda + 5 = 0 \iff \lambda = \frac{2 \pm \sqrt{4 - 20}}{2} = \frac{2 \pm 4i}{2} = 1 \pm 2i.$$

For the eigenvalue $\lambda = 1 - 2i$, we use the trick from class: the first row $\begin{pmatrix} a & b \end{pmatrix}$ of $A - \lambda I$ will lead to an eigenvector $\begin{pmatrix} -b \\ a \end{pmatrix}$ (or equivalently, $\begin{pmatrix} b \\ -a \end{pmatrix}$ if you prefer).

$$(A - (1 - 2i)I \mid 0) = \begin{pmatrix} 2i & 2 \mid 0\\ (*) & (*) \mid 0 \end{pmatrix} \implies v = \begin{pmatrix} -2\\ 2i \end{pmatrix}$$

From the correspondence between conjugate eigenvalues and their eigenvectors, we know (without doing any additional work!) that for the eigenvalue

 $\lambda = 1 + 2i$, a corresponding eigenvector is $w = \overline{v} = \begin{pmatrix} -2 \\ -2i \end{pmatrix}$.

b) We use $\lambda = 1 - 2i$ and its associated $v = \begin{pmatrix} -2\\ 2i \end{pmatrix}$. $A = PCP^{-1}$ where $P = \begin{pmatrix} \operatorname{Re}(v) & \operatorname{Im}(v) \end{pmatrix} = \begin{pmatrix} -2 & 0\\ 0 & 2 \end{pmatrix}$ and $C = \begin{pmatrix} \operatorname{Re}(\lambda) & \operatorname{Im}(\lambda)\\ -\operatorname{Im}(\lambda) & \operatorname{Re}(\lambda) \end{pmatrix} = \begin{pmatrix} 1 & -2\\ 2 & 1 \end{pmatrix}$.

The scale is by a factor of $|\lambda| = |1 + 2i| = \sqrt{1^2 + 2^2} = \sqrt{5}$. If we factor this out of *C* we get

$$C = \sqrt{5} \begin{pmatrix} \frac{1}{\sqrt{5}} & -\frac{2}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \end{pmatrix}.$$

We can use our known formula for rotation matrices (Ch. 1) to find the angle of rotation, or alternatively we can plug in the formula we saw in class in 5.5.

<u>Rotation matrix formula</u>: Let θ be the angle of counterclockwise rotation. From the first row we see $\cos(\theta) = \frac{1}{\sqrt{5}}$ and $-\sin(\theta) = -\frac{2}{\sqrt{5}}$, so $\sin(\theta) = \frac{2}{\sqrt{5}}$. Therefore, θ is in the first quadrant and $\tan(\theta) = 2$, hence $\theta = \arctan(2)$.

C is counterclockwise rotation by the angle arctan(2), followed by scaling by a factor of $\sqrt{5}$.

Alternative for finding angle (from section 5.5): Rotation is counterclockwise by $arg(\overline{\lambda})$ (or equivalently, by $-arg(\lambda)$). Since $\lambda = 1-2i$, we have $\overline{\lambda} = 1+2i$, and $arg(\overline{\lambda})$ lies in quadrant 1 and has tangent $\frac{2}{1}$, hence $arg(\overline{\lambda}) = arctan(2)$.

See the [interactive] demo for how A acts geometrically.

***Note: there are multiple answers possible for part **b**). For example, for the eigenvector we could have used $\begin{pmatrix} b \\ -a \end{pmatrix}$ where $\begin{pmatrix} a & b \end{pmatrix}$ is the first row of $A - \lambda I$. Row 1 of $A - \lambda I$ was $\begin{pmatrix} 2i & 2 \end{pmatrix}$, so $\begin{pmatrix} 2 \\ -2i \end{pmatrix}$ as an eigenvector. This would give us $P = \begin{pmatrix} 2 & 0 \\ 0 & -2 \end{pmatrix}$ rather than $P = \begin{pmatrix} -2 & 0 \\ 0 & 2 \end{pmatrix}$. However, it would still be the case that $A = PCP^{-1}$ since

$$PCP^{-1} = \begin{pmatrix} 2 & 0 \\ 0 & -2 \end{pmatrix} \begin{pmatrix} 1 & -2 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} \frac{1}{2} & 0 \\ 0 & -\frac{1}{2} \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ -2 & 1 \end{pmatrix} = A.$$