MATH 1553, SPRING 2018
 SAMPLE MIDTERM 1: THROUGH SECTION 1.5

| Name | Section | |
| :--- | :--- | :--- | :--- |

Please read all instructions carefully before beginning.

- You have 50 minutes to complete this exam.
- There are no aids of any kind (calculators, notes, text, etc.) allowed.
- Please show your work unless specified otherwise. A correct answer without appropriate work may be given little or no credit.
- You may cite any theorem proved in class or in the sections we covered in the text.
- Good luck!

This is a practice exam. It is similar in format, length, and difficulty to the real exam. It is not meant as a comprehensive list of study problems. I recommend completing the practice exam in 50 minutes, without notes or distractions.

Problem 1.

True or false. Circle T if the statement is always true, and circle F otherwise. You do not need to justify your answer.
a) $\mathbf{T} \quad$ If $A x=b$ is consistent, then the equation $A x=5 b$ is consistent.
b) $\mathbf{T} \quad \mathbf{F}$ If a system of linear equations has more variables than equations, then the system must have infinitely many solutions.
c) $\quad \mathbf{T} \quad \mathbf{F} \quad$ If A is an $m \times n$ matrix and $A x=0$ has a unique solution, then $A x=b$ is consistent for every b in \mathbf{R}^{m}.
d) $\mathbf{T} \quad \mathbf{F} \quad$ The three vectors $\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)$, and $\left(\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right) \operatorname{span} \mathbf{R}^{3}$.
e) $\mathbf{T} \quad \mathbf{F}$ If A is a 5×3 matrix, then it is possible for $A x=0$ to be inconsistent.

Solution.

a) True. If $A w=b$ then $A(5 w)=5 A w=5 b$.
b) False. The system can be inconsistent. For example: $x+y+z=5, x+y+z=2$.
c) False. For example, if $A=\left(\begin{array}{ll}1 & 0 \\ 0 & 1 \\ 0 & 0\end{array}\right)$, then $A x=0$ has only the trivial solution, but $A x=\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$ has no solution.
d) True. The three vectors form a 3×3 matrix with a pivot in every row.
e) False. Every homogeneous system is consistent.

Problem 2.

Parts (a), (b) and (c) are 2 points each. Parts (d) and (e) are 3 points each.
a) Compute $\left(\begin{array}{cc}3 & 2 \\ -2 & 0 \\ 1 & 4\end{array}\right)\binom{1}{-3}$
b) If A is a 2×3 matrix with 2 pivots, then the set of solutions to $A x=0$ is a:
(circle one answer) point line 2-plane 3-plane in:

$$
\begin{array}{llll}
\text { (circle one answer) } & \mathbf{R} & \mathbf{R}^{2} & \mathbf{R}^{3} \text {. }
\end{array}
$$

c) Write a vector equation which represents an inconsistent system of two linear equations in x_{1} and x_{2}.
d) Write a vector in \mathbf{R}^{3} which is not a linear combination of $v_{1}=\left(\begin{array}{l}4 \\ 1 \\ 1\end{array}\right)$ and $v_{2}=\left(\begin{array}{l}5 \\ 2 \\ 2\end{array}\right)$. Justify your answer.
e) If b, v, w are vectors in \mathbf{R}^{3} and $\operatorname{Span}\{b, v, w\}=\mathbf{R}^{3}$, is it possible that b is in Span $\{v, w\}$? Justify your answer.

Solution.

a) $1\left(\begin{array}{c}3 \\ -2 \\ 1\end{array}\right)-3\left(\begin{array}{l}2 \\ 0 \\ 4\end{array}\right)=\left(\begin{array}{c}3 \\ -2 \\ 1\end{array}\right)+\left(\begin{array}{c}-6 \\ 0 \\ -12\end{array}\right)=\left(\begin{array}{c}-3 \\ -2 \\ -11\end{array}\right)$.
b) Line in \mathbf{R}^{3}. Since there are 2 pivots but 3 columns, one column will not have a pivot, so $A x=0$ will have exactly one free variable. The number of entries in x must match the number of columns of A (namely, 3), so each solution x is in \mathbf{R}^{3}.
c) The system $\left(\begin{array}{ll|l}1 & 1 & 0 \\ 1 & 1 & 1\end{array}\right)$ is inconsistent; its corresponding vector equation is

$$
x_{1}\binom{1}{1}+x_{2}\binom{1}{1}=\binom{0}{1}
$$

d) If v is a linear combination of v_{1} and v_{2}, then $v=c v_{1}+d v_{2}=\left(\begin{array}{c}4 c+5 d \\ c+2 d \\ c+2 d\end{array}\right)$ for some scalars c and d, so the second entry of v must equal its third entry. Therefore, a vector such as $\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$ cannot be a linear combination of v_{1} and v_{2}.
e) No. Recall that $\operatorname{Span}\{b, v, w\}$ is the set of all linear combinations of b, v, and w. If b is in $\operatorname{Span}\{v, w\}$ then b is a linear combination of v and w. Consequently, any element of $\operatorname{Span}\{b, v, w\}$ is a linear combination of v and w and is therefore in $\operatorname{Span}\{v, w\}$,
which is at most a 2-plane and cannot be all of \mathbf{R}^{3}.
To see why the span of v and w can never be \mathbf{R}^{3}, consider the matrix A whose columns are v and w. Since A is 3×2, it has at most two pivots, so A cannot have a pivot in every row. Therefore, by a theorem from section 1.4, the equation $A x=b$ will fail to be consistent for some b in \mathbf{R}^{3}, which means that some b in \mathbf{R}^{3} is not in the span of v and w.

Johnny Rico believes that the secret to the universe can be found in the system of two linear equations in x and y given by

$$
\begin{gathered}
x-y=h \\
3 x+h y=4
\end{gathered}
$$

where h is a real number.
a) Find all values of h (if any) which make the system inconsistent. Briefly justify your answer.
b) Find all values of h (if any) which make the system have a unique solution. Briefly justify your answer.

Solution.

Represent the system with an augmented matrix and row-reduce:

$$
\left(\begin{array}{rr|r}
1 & -1 & h \\
3 & h & 4
\end{array}\right) \xrightarrow{R_{2}-3 R_{1}}\left(\begin{array}{rr|r}
1 & -1 & h \\
0 & h+3 & 4-3 h
\end{array}\right) .
$$

a) If $h=-3$ then the matrix is $\left(\begin{array}{rr|r}1 & -1 & -3 \\ 0 & 0 & 13\end{array}\right)$, which has a pivot in the rightmost column and is therefore inconsistent.
b) If $h \neq-3$, then the matrix has a pivot in each row to the left of the augment: $\left(\begin{array}{rr|r}\boxed{1} & -1 & h \\ 0 & \boxed{\mathrm{~h}+3} & 4-3 h\end{array}\right)$. The right column is not a pivot column, so the system is consistent. The left side has a pivot in each column, so the solution is unique.
a) Solve the system of equations by putting an augmented matrix into reduced row echelon form. Clearly indicate which variables (if any) are free variables.

$$
\begin{gathered}
x_{1}+2 x_{2}+2 x_{3}-x_{4}=4 \\
2 x_{1}+4 x_{2}+x_{3}-2 x_{4}=-1 \\
-x_{1}-2 x_{2}-x_{3}+x_{4}=-1
\end{gathered}
$$

b) Write the set of solutions to

$$
\begin{gathered}
x_{1}+2 x_{2}+2 x_{3}-x_{4}=0 \\
2 x_{1}+4 x_{2}+x_{3}-2 x_{4}=0 \\
-x_{1}-2 x_{2}-x_{3}+x_{4}=0
\end{gathered}
$$

in parametric vector form.

Solution.

a)

$$
\begin{gathered}
\left(\begin{array}{rrrr|r}
1 & 2 & 2 & -1 & 4 \\
2 & 4 & 1 & -2 & -1 \\
-1 & -2 & -1 & 1 & -1
\end{array}\right) \xrightarrow[R_{3}=R_{3}+R_{1}]{R_{2}=R_{2}-2 R_{1}}\left(\begin{array}{rrrr|r}
1 & 2 & 2 & -1 & 4 \\
0 & 0 & -3 & 0 & -9 \\
0 & 0 & 1 & 0 & 3
\end{array}\right) \xrightarrow{R_{2} \leftrightarrow R_{3}}\left(\begin{array}{rrrr|r}
1 & 2 & 2 & -1 & 4 \\
0 & 0 & 1 & 0 & 3 \\
0 & 0 & -3 & 0 & -9
\end{array}\right) \\
\xrightarrow[R_{1}=R_{1}-2 R_{2}]{R_{3}=R_{3}+3 R_{2}}\left(\begin{array}{rrrr|r}
1 & 2 & 0 & -1 & -2 \\
0 & 0 & 1 & 0 & 3 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
\end{gathered}
$$

Therefore, x_{2} and x_{4} are free, and we have:

$$
x_{1}=-2-2 x_{2}+x_{4} \quad x_{2}=x_{2} \quad x_{3}=3 \quad x_{4}=x_{4} .
$$

b) If we had written the solution to part (a) in parametric vector form, it would be:

$$
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=\left(\begin{array}{c}
-2-2 x_{2}+x_{4} \\
x_{2} \\
3 \\
x_{4}
\end{array}\right)=\left(\begin{array}{c}
-2 \\
0 \\
3 \\
0
\end{array}\right)+x_{2}\left(\begin{array}{c}
-2 \\
1 \\
0 \\
0
\end{array}\right)+x_{4}\left(\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right) .
$$

The equation in (b) is just the corresponding homogeneous equation, which is a translate of the above plane which includes the origin.

$$
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=x_{2}\left(\begin{array}{c}
-2 \\
1 \\
0 \\
0
\end{array}\right)+x_{4}\left(\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right) \quad\left(x_{2}, x_{4} \text { real }\right)
$$

Problem 5.

Write an augmented matrix corresponding to a system of two linear equations in three variables x_{1}, x_{2}, x_{3}, whose solution set is the span of $\left(\begin{array}{c}-4 \\ 1 \\ 0\end{array}\right)$.
Briefly justify your answer.

Solution.

This problem is familiar territory, except that here, we are asked to come up with a system with the prescribed span, rather than being handed a system and discovering the span.

Since the span of any vector includes the origin, the zero vector is a solution, so the system is homogeneous.

Note that the span of $\left(\begin{array}{c}-4 \\ 1 \\ 0\end{array}\right)$ is all vectors of the form $t\left(\begin{array}{c}-4 \\ 1 \\ 0\end{array}\right)$ where t is real.
It consists of all $\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)$ so that $x_{1}=-4 x_{2}, x_{2}=x_{2}, x_{3}=0$.
The equation $x_{1}=-4 x_{2}$ gives $x_{1}+4 x_{2}=0$, so one line in the matrix can be $\left(\begin{array}{lll|l}1 & 4 & 0 \mid 0\end{array}\right)$. The equation $x_{3}=0$ translates to $\left(\begin{array}{lll|l}0 & 0 & 1 \mid 0\end{array}\right)$. Note that this leaves x_{2} free, as desired.

This gives us the augmented matrix

$$
\left(\begin{array}{lll|l|}
1 & 4 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right) .
$$

(Multiple examples are possible)

Let's check: the system has one free variable x_{2}.
The first line says $x_{1}+4 x_{2}=0$, so $x_{1}=-4 x_{2}$. The second line says $x_{3}=0$.
Therefore, the general solution is $x=\left(\begin{array}{c}-4 x_{2} \\ x_{2} \\ 0\end{array}\right)=x_{2}\left(\begin{array}{c}-4 \\ 1 \\ 0\end{array}\right)$ where x_{2} is real.
In other words, the solution set is the span of $\left(\begin{array}{c}-4 \\ 1 \\ 0\end{array}\right)$.
The system of equations is

$$
\begin{gathered}
x_{1}+4 x_{2}=0 \\
x_{3}=0 .
\end{gathered}
$$

[Scratch work]

