MATH 1553, SPRING 2018
 SAMPLE MIDTERM 1: THROUGH SECTION 1.5

| Name | Section | |
| :--- | :--- | :--- | :--- |

Please read all instructions carefully before beginning.

- You have 50 minutes to complete this exam.
- There are no aids of any kind (calculators, notes, text, etc.) allowed.
- Please show your work unless specified otherwise. A correct answer without appropriate work may be given little or no credit.
- You may cite any theorem proved in class or in the sections we covered in the text.
- Good luck!

This is a practice exam. It is similar in format, length, and difficulty to the real exam. It is not meant as a comprehensive list of study problems. I recommend completing the practice exam in 50 minutes, without notes or distractions.

Problem 1.

True or false. Circle \mathbf{T} if the statement is always true, and circle \mathbf{F} otherwise. You do not need to justify your answer.
a) $\mathbf{T} \quad$ If $A x=b$ is consistent, then the equation $A x=5 b$ is consistent.
b) $\mathbf{T} \quad \mathbf{F}$ If a system of linear equations has more variables than equations, then the system must have infinitely many solutions.
c) $\quad \mathbf{T} \quad \mathbf{F} \quad$ If A is an $m \times n$ matrix and $A x=0$ has a unique solution, then $A x=b$ is consistent for every b in \mathbf{R}^{m}.
d) $\mathbf{T} \quad \mathbf{F} \quad$ The three vectors $\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)$, and $\left(\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right)$ span \mathbf{R}^{3}.
e) $\mathbf{T} \quad \mathbf{F} \quad$ If A is a 5×3 matrix, then it is possible for $A x=0$ to be inconsistent.

Problem 2.

Parts (a), (b) and (c) are 2 points each. Parts (d) and (e) are 3 points each.
a) Compute $\left(\begin{array}{cc}3 & 2 \\ -2 & 0 \\ 1 & 4\end{array}\right)\binom{1}{-3}$
b) If A is a 2×3 matrix with 2 pivots, then the set of solutions to $A x=0$ is a:
(circle one answer) point line 2-plane 3-plane

$$
\text { (circle one answer) } \quad \mathbf{R} \quad \mathbf{R}^{2} \quad \mathbf{R}^{3} \text {. }
$$

c) Write a vector equation which represents an inconsistent system of two linear equations in x_{1} and x_{2}.
d) Write a vector in \mathbf{R}^{3} which is not a linear combination of $v_{1}=\left(\begin{array}{l}4 \\ 1 \\ 1\end{array}\right)$ and $v_{2}=\left(\begin{array}{l}5 \\ 2 \\ 2\end{array}\right)$. Justify your answer.
e) If b, v, w are vectors in \mathbf{R}^{3} and $\operatorname{Span}\{b, v, w\}=\mathbf{R}^{3}$, is it possible that b is in Span $\{v, w\}$? Justify your answer.

Johnny Rico believes that the secret to the universe can be found in the system of two linear equations in x and y given by

$$
\begin{gathered}
x-y=h \\
3 x+h y=4
\end{gathered}
$$

where h is a real number.
a) Find all values of h (if any) which make the system inconsistent. Briefly justify your answer.
b) Find all values of h (if any) which make the system have a unique solution. Briefly justify your answer.

Problem 4.

a) Solve the system of equations by putting an augmented matrix into reduced row echelon form. Clearly indicate which variables (if any) are free variables.

$$
\begin{gathered}
x_{1}+2 x_{2}+2 x_{3}-x_{4}=4 \\
2 x_{1}+4 x_{2}+x_{3}-2 x_{4}=-1 \\
-x_{1}-2 x_{2}-x_{3}+x_{4}=-1
\end{gathered}
$$

b) Write the set of solutions to

$$
\begin{gathered}
x_{1}+2 x_{2}+2 x_{3}-x_{4}=0 \\
2 x_{1}+4 x_{2}+x_{3}-2 x_{4}=0 \\
-x_{1}-2 x_{2}-x_{3}+x_{4}=0
\end{gathered}
$$

in parametric vector form.

Problem 5.

Write an augmented matrix corresponding to a system of two linear equations in three variables x_{1}, x_{2}, x_{3}, whose solution set is the span of $\left(\begin{array}{c}-4 \\ 1 \\ 0\end{array}\right)$. Briefly justify your answer.
[Scratch work]

