MATH 1553, JANKOWSKI MIDTERM 1, SPRING 2018, LECTURE C

Name		GT Email	@gatech.edu
------	--	----------	-------------

Write your section number here:

Please **read all instructions** carefully before beginning.

- Please leave your GT ID card on your desk until your TA matches your exam.
- The maximum score on this exam is 50 points.
- You have 50 minutes to complete this exam.
- There are no aids of any kind (notes, text, etc.) allowed.
- Please show your work. If you cannot fit your work on the front side of the page, use the back side of the page as indicated.
- We will hand out loose scrap paper, but it **will not be graded** under any circumstances. All work must be written on the exam itself.
- You may cite any theorem proved in class or in the sections we covered in the text.
- Good luck!

These problems are true or false. Circle T if the statement is <i>always</i> true. Otherwise, answer F . You do not need to justify your answer.				
a)	Т	F	The augmented matrix $\begin{pmatrix} 0 & 1 & 0 & & 2 \\ 0 & 0 & 1 & & -3 \end{pmatrix}$ is in reduced row echelon form.	
b)	Т	F	A system of three linear equations in four variables can have ex- actly one solution.	
c)	Т	F	The equation $\begin{pmatrix} 1 & -1 & 2 \\ 0 & 4 & 3 \end{pmatrix} x = b$ is consistent for every b in \mathbf{R}^2 .	
d)	Т	F	If <i>A</i> is an $m \times n$ matrix and $Ax = b$ has a unique solution for some <i>b</i> in \mathbb{R}^m , then $Ax = 0$ has only the trivial solution.	
e)	Т	F	If <i>A</i> is a 3×4 matrix and the solution set for $Ax = 0$ is a line, then <i>A</i> has 2 pivots.	

Solution.

a) True.

- **b)** False. If the system is consistent, it will have at least one free variable (4 columns but max of 3 pivots), so it will have infinitely many solutions.
- c) True, since $\begin{pmatrix} 1 & -1 & 2 \\ 0 & 4 & 3 \end{pmatrix}$ has a pivot in every row.
- **d)** True. Since Ax = b is consistent, its solution set is a translation of the solution set to Ax = 0. Since Ax = b has a unique solution, this means Ax = 0 has a unique solution (namely the trivial solution).
- e) False. If the solution set to Ax = 0 is a line, then we must have exactly one free variable in the homogeneous solution, which means that exactly 3 out of the 4 columns of *A* will have pivots.

Extra space for scratch work on problem 1

Problem 2.

Show your work on parts (a) and (d) (no work necessary for (b) or (c)).

a) Compute
$$\begin{pmatrix} 2 & -1 & 1 \\ 3 & 0 & -1 \end{pmatrix} \begin{pmatrix} 3 \\ -2 \\ 0 \end{pmatrix}$$
.

- **b)** Write three different vectors v_1 , v_2 , v_3 in \mathbb{R}^3 so that $\text{Span}\{v_1, v_2, v_3\}$ is only a plane.
- c) Write an *augmented* 3×3 matrix in reduced row echelon form whose corresponding system of linear equations is *inconsistent*, and which has a pivot in every row.
- d) Find all solutions to the vector equation

$$x_1\begin{pmatrix} 2\\ -4\\ 1 \end{pmatrix} + x_2\begin{pmatrix} 4\\ 1\\ -2 \end{pmatrix} = \begin{pmatrix} 2\\ 14\\ -7 \end{pmatrix}.$$

If there are no solutions, justify why the vector equation is inconsistent.

Solution.

a)
$$3\binom{2}{3} - 2\binom{-1}{0} + 0\binom{1}{-1} = \binom{6}{9} + \binom{2}{0} = \binom{8}{9}$$
.
b) Many possibilities. For example, $v_1 = \binom{1}{0}$, $v_2 = \binom{0}{1}$, $v_3 = \binom{1}{1}$.
c) $\binom{1 \ 0 \ 0}{0 \ 1 \ 0}$. Also accepted answers like $\binom{1 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 1 \ 0}{0 \ 0 \ 0 \ 1}$ for those who interpreted the wording to mean that we should have a 3 × 3 matrix to the left of the augment.
d)

$$\begin{pmatrix} 2 & 4 & | & 2 \\ -4 & 1 & | & 14 \\ 1 & -2 & | & -7 \end{pmatrix} \xrightarrow{R_1 = R_1/2} \begin{pmatrix} 1 & 2 & | & 1 \\ -4 & 1 & | & 14 \\ 1 & -2 & | & -7 \end{pmatrix} \xrightarrow{R_2 = R_2 + 4R_1} \begin{pmatrix} 1 & 2 & | & 1 \\ 0 & 9 & | & 18 \\ 0 & -4 & | & -8 \end{pmatrix} \xrightarrow{R_2 = R_2/9} \begin{pmatrix} 1 & 2 & | & 1 \\ 0 & 1 & | & 2 \\ 0 & 1 & | & 2 \end{pmatrix} \xrightarrow{R_3 = R_3 - R_2} \begin{pmatrix} 1 & 0 & | & -3 \\ 0 & 1 & | & 2 \\ 0 & 0 & | & 0 \end{pmatrix} \xrightarrow{R_3 = R_3 - R_2}$$

Therefore, $x_1 = -3$ and $x_2 = 2$.

Fairway Frank is infatuated with the system of linear equations given by

$$3x - 4y = 2$$
$$6x + hy = k,$$

where h and k are some real numbers.

- a) Determine all values of *h* and *k* (if there are any) so that the system of equations is inconsistent.
- **b)** Determine all values of *h* and *k* (if there are any) so that the system of equations has infinitely many solutions.

Solution.

$$\begin{pmatrix} 3 & -4 & | & 2 \\ 6 & h & | & k \end{pmatrix} \xrightarrow{R_2 = R_2 - 2R_1} \begin{pmatrix} 3 & -4 & | & 2 \\ 0 & h + 8 & | & k - 4 \end{pmatrix}.$$

a) The system is inconsistent if and only if the right column is a pivot column. Therefore, we need h + 8 = 0 and $k - 4 \neq 0$ so that the rightmost entry of the second row is a pivot.

$$h = -8 \qquad k \neq 4$$

b) To have infinitely many solutions, we must have a free variable AND the rightmost column cannot be a pivot colum, so the entire second row above must be zero. Thus h + 8 = 0 and k - 4 = 0.

$$h = -8 \qquad k = 4$$

*** In both parts, we are finding *h* and *k* so that the lines given by each equation are parallel. In (a), we solve so that we get two *different* parallel lines. In (b), each equation gives the *same* line since the second row is two times the first row.

Problem 4.

Consider the system of equations in x_1 , x_2 , x_3 , and x_4 given below.

$$x_1 - x_2 - 2x_3 + 2x_4 = -7$$

-x_1 + x_2 + x_3 - 2x_4 = 5
-4x_1 + 4x_2 + 6x_3 - 8x_4 = 24

- a) Write this system of linear equations as a vector equation.
- **b)** Write this system of linear equations as a matrix equation Ax = b. Specify every entry of *A*, *x*, and *b*.
- **c)** Put an augmented matrix into reduced row echelon form to solve the system of equations. Write your answer in parametric vector form.

Solution.

$$\mathbf{a)} \ x_1 \begin{pmatrix} 1 \\ -1 \\ -4 \end{pmatrix} + x_2 \begin{pmatrix} -1 \\ 1 \\ 4 \end{pmatrix} + x_3 \begin{pmatrix} -2 \\ 1 \\ 6 \end{pmatrix} + x_4 \begin{pmatrix} 2 \\ -2 \\ -8 \end{pmatrix} = \begin{pmatrix} -7 \\ 5 \\ 24 \end{pmatrix}.$$

$$\mathbf{b)} \ \begin{pmatrix} 1 & -1 & -2 & 2 \\ -1 & 1 & 1 & -2 \\ -4 & 4 & 6 & -8 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} -7 \\ 5 \\ 24 \end{pmatrix}.$$

$$\mathbf{c)}$$

$$\begin{pmatrix} 1 & -1 & -2 & 2 \\ -4 & 4 & 6 & -8 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} -7 \\ 5 \\ 24 \end{pmatrix}.$$

$$\mathbf{c)}$$

$$\begin{pmatrix} 1 & -1 & -2 & 2 \\ -4 & 4 & 6 & -8 \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \end{pmatrix} = \begin{pmatrix} 1 & -1 & -2 & 2 \\ -2 \\ x_{3} \\ x_{4} \end{pmatrix} = \begin{pmatrix} -7 \\ 5 \\ 24 \end{pmatrix}.$$

$$\mathbf{c)}$$

$$\begin{pmatrix} 1 & -1 & -2 & 2 \\ -4 \\ x_{2} \\ x_{3} \\ x_{4} \end{pmatrix} = \begin{pmatrix} -7 \\ 5 \\ 24 \end{pmatrix}.$$

$$\mathbf{c)}$$

$$\begin{pmatrix} 1 & -1 & -2 & 2 \\ -4 \\ x_{2} \\ x_{3} \\ x_{4} \end{pmatrix} = \begin{pmatrix} -7 \\ 5 \\ 24 \end{pmatrix}.$$

$$\mathbf{c)}$$

$$\begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \end{pmatrix} = \begin{pmatrix} x_{2} - 2x_{4} - 3 \\ x_{2} \\ 2 \\ x_{4} \end{pmatrix} = \begin{pmatrix} x_{2} \\ x_{2} \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} -2x_{4} \\ 0 \\ 0 \\ x_{4} \end{pmatrix} + \begin{pmatrix} -3 \\ 0 \\ 2 \\ 0 \end{pmatrix} = \begin{bmatrix} x_{1} \\ 1 \\ 0 \\ 0 \end{pmatrix} + x_{4} \begin{pmatrix} -2 \\ 0 \\ 0 \\ 1 \end{pmatrix} + \begin{pmatrix} -3 \\ 0 \\ 2 \\ 0 \end{pmatrix}.$$

Parts (a) and (b) are unrelated.

a) Write a 3 × 3 matrix *A* in reduced row echelon form, with the property that the solution set to Ax = 0 is Span $\left\{ \begin{pmatrix} 1\\0\\2 \end{pmatrix} \right\}$. Briefly justify your answer.

b) Write a vector *b* in \mathbf{R}^3 which is *not* a linear combination of $\begin{pmatrix} 1\\1\\0 \end{pmatrix}$ and $\begin{pmatrix} 0\\0\\-1 \end{pmatrix}$. You do not need to justify your answer.

Solution.

a) Any solution $\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$ to Ax = 0 is a scalar multiple of $\begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}$, so $x_1 = \frac{x_3}{2}$ and $x_2 = 0$. The equations $x_1 - \frac{x_3}{2} = 0$ and $x_2 = 0$ are just $\begin{pmatrix} 1 & 0 & -\frac{1}{2} & 0 \end{pmatrix}$ and $\begin{pmatrix} 0 & 1 & 0 & 0 \end{pmatrix}$. Therefore, the first two rows of A are $\begin{pmatrix} 1 & 0 & -\frac{1}{2} & 0 \end{pmatrix}$ and $\begin{pmatrix} 0 & 1 & 0 & 0 \end{pmatrix}$. To fill the remaining row of A and make sure that A is in RREF, we just put a row of zeros.

$$A = \begin{pmatrix} 1 & 0 & -\frac{1}{2} \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

We can check: Ax = 0 precisely when $x_1 - \frac{x_3}{2} = 0$ and $x_2 = 0$, which is exactly what we wanted.

b) Just like in the practice exam, we see that any vector in the span of $\begin{pmatrix} 1\\1\\0 \end{pmatrix}$ and $\begin{pmatrix} 0\\0\\-1 \end{pmatrix}$ must have its first entry equal to its second entry, so a vector like $\begin{pmatrix} 1\\0\\0 \end{pmatrix}$ cannot be in

the span.

Alternatively, you can use numbers for any inconsistent system corresponding to $\begin{pmatrix} 1 & 0 & a \\ 1 & 0 & b \\ 0 & -1 & c \end{pmatrix}$. If we choose $a \neq b$ then the first step of row reduction will give $\begin{pmatrix} 1 & 0 & a \\ 0 & 0 & b-a \\ 0 & -1 & c \end{pmatrix}$ which puts a pivot in the right column if $a \neq b$.