Name: \qquad Recitation Section:

Math 1553 Lecture C, Quiz 3: Section 1.3 (10 points, 10 minutes)

Solutions

1. (2 points) Write the following system of linear equations in x_{1}, x_{2}, and x_{3} as a vector equation:

$$
\begin{gathered}
x_{1}+x_{3}=4 \\
3 x_{1}+2 x_{2}-x_{3}=1
\end{gathered}
$$

(you do not need to solve the vector equation).

Solution.

We separate and then pull out the constants:

$$
x_{1}\binom{1}{3}+x_{2}\binom{0}{2}+x_{3}\binom{1}{-1}=\binom{4}{1}
$$

2. (1 point each) True or False. Circle TRUE if the statement is always true. Otherwise, circle FALSE.
a) Asking whether the linear system corresponding to an augmented matrix $\left(\begin{array}{lll}a_{1} & a_{2} & a_{3} \mid b\end{array}\right)$ is consistent, amounts to asking whether b is in $\operatorname{Span}\left\{a_{1}, a_{2}, a_{3}\right\}$.
TRUE FALSE
I took this from the 1.3 Webwork.
b) If v_{1} and v_{2} are nonzero vectors in \mathbf{R}^{2}, then $\operatorname{Span}\left\{v_{1}, v_{2}\right\}=\mathbf{R}^{2}$. TRUE

FALSE
If v_{1} and v_{2} are on the same line, then $\operatorname{Span}\left\{v_{1}, v_{2}\right\}$ is just a line in \mathbf{R}^{2}. We did an example in class, and there is one in the 1.3 PDF (page 10).
(Please turn over to the back side!)

On problem \#3, show your work clearly. If you write the correct answer without appropriate work, you will receive little or no credit.
3. (6 points) Let

$$
v_{1}=\left(\begin{array}{c}
1 \\
-2 \\
3
\end{array}\right) \quad v_{2}=\left(\begin{array}{c}
3 \\
11 \\
2
\end{array}\right), \quad w=\left(\begin{array}{c}
1 \\
h \\
-4
\end{array}\right) .
$$

For what value (or values) of h is w is a linear combination of v_{1} and v_{2} ?

Solution.

From section 1.3 we know that w is a linear combination of v_{1} and v_{2} if and only if the system represented by the augmented matrix below is consistent.

$$
\begin{gathered}
\left(\begin{array}{rr|r}
1 & 3 & 1 \\
-2 & 11 & h \\
3 & 2 & -4
\end{array}\right) \xrightarrow[R_{3}=R_{3}-3 R_{1}]{R_{2}=R_{2}+2 R_{1}}\left(\begin{array}{rr|r}
1 & 3 & 1 \\
0 & 17 & \begin{array}{r}
1 \\
\\
0
\end{array} \\
\hline+7 & -7
\end{array}\right) \xrightarrow{R_{2} \leftrightarrow R_{3}}\left(\begin{array}{rr|r}
1 & 3 & 1 \\
0 & -7 & -7 \\
0 & 17 & h+2
\end{array}\right) \xrightarrow{R_{2}=R_{2} \cdot \frac{-1}{\longrightarrow}}\left(\begin{array}{rr|r}
1 & 3 & 1 \\
0 & 1 & 1 \\
0 & 17 & h+2
\end{array}\right) \\
\xrightarrow{R_{3}=R_{3}-17 R_{2}}\left(\begin{array}{rrr|r}
1 & 3 & 1 \\
0 & 1 & 1 \\
0 & 0 & 15
\end{array}\right) .
\end{gathered}
$$

The system is consistent precisely when the right column is not a pivot column, so we must have $h-15=0$.

$$
h=15 .
$$

****If we had wanted to go a step further and write w as a linear combination of v_{1} and v_{2}, we would put the matrix in RREF to solve $x_{1} v_{1}+x_{2} v_{2}=w$.

$$
\left(\begin{array}{rr|r}
\boxed{1} & 3 & 1 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right) \xrightarrow{R_{1}=R_{1}-3 R_{2}}\left(\begin{array}{rr|r}
1 & 0 & -2 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right), \quad x_{1}=-2, \quad x_{2}=1
$$

So $-2 v_{1}+v_{2}=w$.

