Math 1553 Lecture C, Quiz 5: 2.1, 2.2, 2.3 (10 points, 10 minutes)

 SolutionsShow your work and justify answers where appropriate. If you write the correct answer without sufficient work or justification, you will receive little or no credit.

1. (1 point each) True or False. Circle TRUE if the statement is always true. Otherwise, circle FALSE. You do not need to justify your answer on this problem.
a) If A is a 3×3 matrix and $A\left(\begin{array}{c}-1 \\ 2 \\ 0\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$, then there is a vector in \mathbf{R}^{3} that cannot be written as a linear combination of the columns of A. TRUE FALSE
(IMT: non-trivial solution to $A x=0 \Longrightarrow$ columns of A don't span R^{3}.)
b) If A is an invertible $n \times n$ matrix, then $\left(A^{-1}\right)^{-1}=A . \quad$ TRUE FALSE
c) If $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ is a linear transformation that is not invertible, then there are vectors x and y in \mathbf{R}^{n} so that $x \neq y$ but $T(x)=T(y)$.
TRUE FALSE (IMT: T is not invertible $\Longrightarrow T$ is not one-to-one)
d) If A is a 3×4 matrix and B is a 4×2 matrix, then the linear transformation transformation Z defined by $Z(x)=A B x$ has domain \mathbf{R}^{2} and codomain \mathbf{R}^{3}. TRUE FALSE ($A B$ is a 3×2 matrix)
2. (3 points) Let $A=\left(\begin{array}{cc}4 & -1 \\ 7 & 1\end{array}\right)$. Find A^{-1}.

Solution.

$$
\text { If } \begin{aligned}
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \text { then } A^{-1} & =\frac{1}{a d-b c}\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right), \text { so } \\
A^{-1} & =\frac{1}{4-(-7)}\left(\begin{array}{cc}
1 & 1 \\
-7 & 4
\end{array}\right)=\left(\begin{array}{cc}
\frac{1}{11} & \frac{1}{11} \\
\frac{-7}{11} & \frac{4}{11}
\end{array}\right) .
\end{aligned}
$$

(Turn over to the back side for problem 3!)
3. (3 points) Write two square matrices A and B so that $A B \neq B A$. Demonstrate that $A B \neq B A$ by computing $A B$ and $B A$.

Solution.

Many examples. We did one in the handwritten notes in class and there is a different example on the PDF slides. Here is a third:

$$
\begin{array}{cc}
A=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) & B=\left(\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right) . \\
A B=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right) & B A=\left(\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) .
\end{array}
$$

