Math 1553 Lecture A, Quiz 5: 2.1, 2.2, 2.3 (10 points, 10 minutes) Solutions

Show your work and justify answers where appropriate. If you write the correct answer without sufficient work or justification, you will receive little or no credit.

- **1.** (1 point each) True or False. Circle TRUE if the statement is *always* true. Otherwise, circle FALSE. You do not need to justify your answer on this problem.
 - a) If A is an $n \times n$ matrix and the equation Ax = 0 has only the trivial solution, then every vector in \mathbb{R}^n can be written as a linear combination of the columns of A.

 TRUE FALSE (Invertible Matrix Theorem)
 - **b)** If *A* is an invertible $n \times n$ matrix, then $(A^{-1})^{-1} = A$. TRUE
 - c) If $T : \mathbb{R}^n \to \mathbb{R}^n$ is a linear transformation that is not invertible, then there are vectors x and y in \mathbb{R}^n so that $x \neq y$ but T(x) = T(y).

 TRUE FALSE (T is not invertible $\Longrightarrow T$ is not one-to-one)
 - d) If A is a 3×4 matrix and B is a 4×2 matrix, then the linear transformation transformation Z defined by Z(x) = ABx has domain \mathbf{R}^2 and codomain \mathbf{R}^3 .

 TRUE FALSE (AB is a 3×2 matrix)
- **2.** (3 points) Let $A = \begin{pmatrix} 4 & 5 \\ -1 & 1 \end{pmatrix}$. Find A^{-1} .

Solution.

If
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 then $A^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$, so
$$A^{-1} = \frac{1}{4 - (-5)} \begin{pmatrix} 1 & -5 \\ 1 & 4 \end{pmatrix} = \begin{pmatrix} \frac{1}{9} & -\frac{5}{9} \\ \frac{1}{9} & \frac{4}{9} \end{pmatrix}.$$

3. (3 points) Write two square matrices *A* and *B* so that $AB \neq BA$. Demonstrate that $AB \neq BA$ by computing *AB* and *BA*.

Solution.

Many examples. We did one in the handwritten notes in class and there is a different example on the PDF slides. Here is a third:

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \quad B = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}.$$

$$AB = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \quad BA = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}.$$