Name:_

Math 1553 Quiz 6: 5.1, 5.2 (10 points, 10 minutes)

Solutions

Show your work and justify answers where appropriate. If you write the correct answer without sufficient work or justification, you will receive little or no credit.

- **1.** True or false, 1 point each. If the statement is *always* true, answer true. Otherwise, answer false.
 - a) If we row-reduce an $n \times n$ matrix *A* to obtain a matrix *B*, then *A* and *B* have the same eigenvalues. TRUE FALSE
 - **b)** Suppose *A* is an $n \times n$ matrix. Then 3 is an eigenvalue of *A* if and only if Col(A-3I) is not \mathbb{R}^n . TRUE FALSE

c) The vector
$$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
 is an eigenvector of the matrix $A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$. TRUE FALSE

Solution.

- a) False. For example, $A = \begin{pmatrix} 2 & 0 \\ 0 & 4 \end{pmatrix}$ has eigenvalues $\lambda = 2$ and $\lambda = 4$, but it can be quickly row-reduced to the identity matrix $B = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ whose only eigenvalue is $\lambda = 1$.
- **b)** True: 3 is an eigenvalue of *A* if and only if A 3I is not invertible, if and only if the columns of A 3I do not span \mathbb{R}^n .
- c) False. The zero vector is never an eigenvector of any matrix.
- **2.** (3 points) Find the eigenvalues of

$$A = \begin{pmatrix} -2 & 1 \\ 1 & -1 \end{pmatrix}.$$

Solution.

$$0 = \det(A - \lambda I) = \det\begin{pmatrix} -2 - \lambda & 1\\ 1 & -1 - \lambda \end{pmatrix} = (-2 - \lambda)(-1 - \lambda) - 1$$
$$= \lambda^2 + 3\lambda + 2 - 1 = \lambda^2 + 3\lambda + 1, \qquad \lambda = \frac{-3 \pm \sqrt{9 - 4}}{2} \qquad \lambda = \frac{-3 \pm \sqrt{5}}{2}$$

Turn over to the back side for problem 3.

3. (4 points) Let $T : \mathbf{R}^2 \to \mathbf{R}^2$ be the linear transformation which reflects across the line *L* drawn below, and let *A* be the standard matrix for *T*.

a) Write all eigenvalues of *A*.

This problem is similar to an example in our class notes near the end of section 5.1, and its appearance on the quiz was inspired by #2(c) from the 5.1-5.2 worksheet, which is nearly the same problem.

 $\lambda_1 = 1$ and $\lambda_2 = -1$.

(The equation of the line was not given, and it is irrelevant: A fixes every vector along the line L, while A flips every vector perpendicular to L.)

b) For each eigenvalue of *A*, draw one eigenvector on the graph above. Your eigenvector does not need to be perfect, but it should be reasonably accurate.

Above, v_1 corresponds to $\lambda_1 = 1$, while v_2 corresponds to $\lambda_2 = -1$. Many answers are possible: v_1 can be any nonzero vector on *L* (going up-to-right or down-to-left), while v_2 can be any nonzero vector perpendicular to *L* (going up-to-left or down-to-right).

Algebraically, the problem would have been much more painful! The line is actually the line $y = \frac{3}{7}x$, the matrix is $A = \frac{1}{29}\begin{pmatrix} 20 & 21\\ 21 & -20 \end{pmatrix}$, and the eigenvectors drawn are $v_1 = \begin{pmatrix} 7/3\\ 1 \end{pmatrix}$ and $v_2 = \begin{pmatrix} -1\\ 7/3 \end{pmatrix}$.