\qquad

Math 1553 Quiz 7: 5.3 (10 points, 10 minutes)

Solutions
Show your work and justify answers where appropriate. If you write the correct answer without sufficient work or justification, you will receive little or no credit.

1. True or false, 1 point each. If the statement is always true, answer true. Otherwise, answer false. You do not need to justify your answer.
a) If A is a 3×3 matrix and its eigenvalues are -1 and 4 , then A is not diagonalizable. TRUE FALSE
b) The matrices $A=\left(\begin{array}{cc}1 & 0 \\ 0 & -2\end{array}\right)$ and $B=\left(\begin{array}{cc}-1 & 0 \\ 0 & 2\end{array}\right)$ are similar.

TRUE FALSE
c) If A is an $n \times n$ diagonal matrix, then A is diagonalizable. TRUE FALSE

Solution.

a) False. For example, $A=\left(\begin{array}{ccc}-1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 4\end{array}\right)$.
b) False: A and B don't even have the same eigenvalues.
c) True. $A=I A I^{-1}$.
2. (2 points) Write a 2×2 matrix A which is not diagonalizable. You do not need to justify your answer.
Solution.
Many examples, such as

$$
\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) \quad \text { or } \quad\left(\begin{array}{cc}
1 & -3 \\
0 & 1
\end{array}\right)
$$

3. (5 points) Write the matrix A whose eigenvectors are $\binom{1}{-3}$ and $\binom{0}{1}$ and whose eigenvalues (in the same order) are -1 and 2.

Solution.

$A=P D P^{-1}$ where $P=\left(\begin{array}{cc}1 & 0 \\ -3 & 1\end{array}\right)$ and $D=\left(\begin{array}{cc}-1 & 0 \\ 0 & 2\end{array}\right)$. We compute $P^{-1}=\left(\begin{array}{ll}1 & 0 \\ 3 & 1\end{array}\right)$.

$$
A=\left(\begin{array}{cc}
1 & 0 \\
-3 & 1
\end{array}\right)\left(\begin{array}{cc}
-1 & 0 \\
0 & 2
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
3 & 1
\end{array}\right)=\left(\begin{array}{cc}
1 & 0 \\
-3 & 1
\end{array}\right)\left(\begin{array}{cc}
-1 & 0 \\
6 & 2
\end{array}\right)=\left(\begin{array}{cc}
-1 & 0 \\
9 & 2
\end{array}\right) .
$$

