
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright

Author's personal copy

Journal of Computational and Applied Mathematics 236 (2012) 3967–3991

Contents lists available at SciVerse ScienceDirect

Journal of Computational and Applied
Mathematics

journal homepage: www.elsevier.com/locate/cam

A survey of numerical methods for IVPs of ODEs with discontinuous
right-hand side
Luca Dieci a, Luciano Lopez b,∗

a School of Mathematics, Georgia Tech Institute, Atlanta, GA 30332-0160, USA
b Dipartimento di Matematica, Universitá degli Studi di Bari ‘‘Aldo Moro’’, Via E. Orabona 4, I-70125, Bari, Italy

a r t i c l e i n f o

Article history:
Received 30 November 2011
Received in revised form 26 January 2012

MSC:
60H40
60H07

Keywords:
Discontinuous ODEs
One-step and multistep methods
Event driven
Time-stepping methods

a b s t r a c t

This work is dedicated to the memory of Donato Trigiante who has been the first teacher
of Numerical Analysis of the second author. The authors remember Donato as a generous
teacher, always ready to discuss with his students, able to give them profound and
interesting suggestions.

Here, we present a survey of numerical methods for differential systems with discon-
tinuous right hand side. In particular, wewill reviewmethodswhere the discontinuities are
detected by using an event function (so-called event driven methods) and methods where
the discontinuities are located by controlling the local errors (so-called time-steppingmeth-
ods). Particular attentionwill be devoted to discontinuous systems of Filippov’s typewhere
sliding behavior on the discontinuity surface is allowed.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction and examples

Differential systems with discontinuous right-hand sides appear pervasively in applications of various nature (see, e.g.
[1–8]). For a sample of references in the context of control, see e.g. [9,10], and in the context of biological systems, see e.g.
[11,12,4,8]; for works on the class of complementarity systems, see [13], for works from the point of view of bifurcations
of dynamical-systems, see [14–18]; of course, see the classical Refs. [19,20,9,10] for a thorough theoretical introduction to
these systems.

Because of their ubiquity in applications of biological and engineering nature, discontinuous differential systems are
receiving a lot of attention. To witness, we mention the recent books [21,22] which deal with specific questions of
bifurcations and numerical simulations for discontinuous differential systems. Indeed, many studies on discontinuous
systems rely on simulation, and the book [21] has a nice collection of different case studies for which specific numerical
techniques have been devised.

Consider the initial value problem (IVP)

x′
= f (x), x(0) given (1.1)

where f : Rs
→ Rs is a given s-dimensional vector field.

When solving (1.1) numerically, traditional convergence analysis of the numericalmethods relies on the assumption that
the right-hand side f (hence the solution) is sufficiently smooth. However, the local truncation error analysis – that forms
the basis of most stepsize control techniques – fails to be valid if there is not sufficient smoothness (locally). In particular,

∗ Corresponding author.
E-mail addresses: dieci@math.gatech.edu (L. Dieci), lopezl@dm.uniba.it (L. Lopez).

0377-0427/$ – see front matter© 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.cam.2012.02.011

Author's personal copy

3968 L. Dieci, L. Lopez / Journal of Computational and Applied Mathematics 236 (2012) 3967–3991

a numerical method may become either inaccurate or inefficient, or both, in region where discontinuities of the solution or
its derivatives occur.

One strategy for treating discontinuities is simply to ignore them and to rely on the local error estimator to ensure that
the error remains acceptably small. Methods of this type are known as time stepping methods. A different strategy is to locate
the discontinuities using an event function h : Rs

→ R, which defines a discontinuity surface Σ = {x ∈ Rs
|h(x) = 0} in the

state space of the differential system. (Of course, this requires knowledge of h.) Thus, when the numerical solution reaches
Σ an event point will be located and one will restart at this point; methods of this type are known as event driven methods.

It is easy to appreciate that there will be classes of discontinuous problems for which it will be better to apply time-
stepping methods than event driven methods and vice versa. For this reason, we will review both classes of methods in this
work.

Of course, one alternative course of action to the abovemethods is to regularize (or smoothing) the system (e.g., see [23]).
Undoubtedly, this leads to simplifications in the theory since existence and uniqueness of solutions may be derived from
the classical theory of ODEs. However, small integration steps are usually required during the numerical simulation of the
regularized system due to the large derivatives that replace the structural changes in the system; indeed, from a numerical
point of view, the regularized system becomes quite stiff. Furthermore, it may also happen that regularization will lead to
changing the dynamics of the original nonsmooth system (see [24]). These shortcomings notwithstanding, regularizing the
system is often a reasonable thing to do in order to perform a preliminary exploration of the problem at hand.

In this paper, we give a brief, but complete, review of themain numerical techniques for solving discontinuous ODEs.We
start our review with a few simple examples of differential systems with discontinuous right hand side.

Example 1.1. This example was proposed by Gear and Østerby in [25]. The discontinuity is caused by the independent
variable reaching a certain value, and thus the problem is actually nonautonomous. Using the same values as in [25], we
have the IVP

x′
= f (x) =


0 when t < 40.33
100 when t ≥ 40.33, (1.2)

with initial condition x(0) = 40.33. When t reaches the value t = 40.33, the vector field f changes discontinuously
from the value 0 to the value 100. Obviously, one could integrate separately two IVPs, one up to t = 40.33 and one past
it. Nevertheless, in [25] the authors are interested in showing the impact of the discontinuity on the performance of the
multistep codes of Hindmarsh, [26], ignoring the breakpoint at t = 40.33. We report on their findings.

From the time the code first attempts to overstep the discontinuity, until it finally succeeds, it uses 118 function
evaluations and takes 97 steps, 18 of which are rejected. The local error tolerance was 10−5 relative to x, corresponding
to 4 × 10−4 in absolute measure. If the discontinuity is known to the code, the code uses no extra step to locate it. On the
other hand, if the discontinuity has to be located (for instance, by a bisection type procedure), in the worse case 23 step
halvings are sufficient to step past the discontinuity.

Example 1.2. Consider the following scalar discontinuous IVP

x′
= f (x) =


−1, x > 0,
−10, x ≤ 0,

with initial condition x(0) = 1, to be integrated in [0, 2]. The exact solution is

x(t) = 1 − t, for 0 ≤ t ≤ 1; and x(t) = −10(t − 1), for 1 ≤ t ≤ 2,

and so the vector field changes from −1 to −10 at x = 0. We integrate this problem using the explicit midpoint method
(EMM),

xk+1 = xk + τ f

xk +

τ

2
f (xk)


, for k = 0, 1, . . . ,N − 1,

on the time interval [0, 2]. In Fig. 1, we show the global errors, at t = 2, of EMM applied with constant and decreasing
stepsize τ =

2
N−1 , for N = 10, 20, 40, 80, 160, . . . , and the semi-log plot of the error, from which we observe that EMM

behaves like a first order method. In Fig. 2, instead, we show the stepsize sequence chosen by the MATLAB routine ODE23
with ATOL= RTOL=1.E-8. Clearly, in proximity of the discontinuity, the code takes very small steps.

Example 1.3 (Brick on Frictional Ramp). This example was used by David Stewart in [27]. It describes a brick moving on a
inclined ramp (see Fig. 3). Two forces act on the brick: gravity g , which wouldmake the brick slide downward, and a friction
force F which opposes sliding. According to Coulomb Law: ‘‘The friction equals the normal contact force times the coefficient
of friction ν’’. In formulas, the equation of motion becomes:

mv′(t) = mg sinα − νmg cosα sgn[v(t)],

Author's personal copy

L. Dieci, L. Lopez / Journal of Computational and Applied Mathematics 236 (2012) 3967–3991 3969

Fig. 1. Global errors (left) and semi-log global errors (right) at t = 2 for τ = 2/(N − 1) and k = 1, 2, 3, 4, 5, 6, 7.

Fig. 2. Stepsize sequence against the time steps for ODE23 routine.

where ‘‘sgn’’ is the sign function defined to be 0 at 0:

sgn[v] =

 1, v > 0,
0, v = 0,

−1, v < 0.

The key issue is whether or not one of the following two conditions is satisfied (see Fig. 4):

(i) sinα − ν cosα > 0,
(ii) sinα − ν cosα < 0.

Case (i) is not hard to understand: v(t) increases for ever. Case (ii) is more interesting, because if v(0) > 0, then v decreases
to 0, and if v(0) < 0, then v increases to 0. Then, what happens when v = 0? Formally, we would have v′ > 0, which
seemingly would make v grow, hence become positive, but then it would have to immediately decrease to 0. On physical
grounds, we expect that the brick will stop and remain with v = 0 for ever. Thus, we notice that this system shows two
different types of behavior: trajectories that transverse the line v = 0 and trajectories that remain at equilibrium on the
line v = 0.

In the above examples, we had vector fields which become discontinuous at some point; this is the classical Filippov case
(see [20]), and it is the case that we will consider in this work, so we will have the solution x continuous but x′ will have a
jump at the discontinuity point. (In general, discontinuous behavior may also occur in one of f ’s derivatives, see [25].)

Thus, we will focus on the model

x′
= f (x) =


f1(x) when h(x) < 0
f2(x) when h(x) > 0, (1.3)

Author's personal copy

3970 L. Dieci, L. Lopez / Journal of Computational and Applied Mathematics 236 (2012) 3967–3991

Fig. 3. Example 1.3. Moving brick.

Fig. 4. Example 1.3. Orientation of the vector fields: cases (i) and (ii).

Fig. 5. The surface, tangent plane and normal vector in 1D and 2D.

where the event function h : Rs
→ R is known, and an initial condition x(t0) = x0 is given such that, say, h(x0) < 0. In

particular, at least locally, the state space Rs is split into two regions R1 and R2 by a surface Σ , where R1, R2, and Σ , are
without loss of generality implicitly characterized as

Σ =

x ∈ Rs

| h(x) = 0

, R1 =


x ∈ Rs

| h(x) < 0

, R2 =


x ∈ Rs

| h(x) > 0

, (1.4)

so thatRs
= R1∪Σ∪R2. Wewill assume that h ∈ Ck, k ≥ 2, and that the gradient of h at x ∈ Σ never vanishes, hx(x) ≠ 0 for

all x ∈ Σ . In the previous examples, the function hwas actually linear (Σ was a plane). In (1.3), the right-hand side f (x) can
be assumed to be smooth in R1 and R2 separately, but it will be usually discontinuous across Σ , that is f1(x) ≠ f2(x), x ∈ Σ .

Many numerical methods known in literature assume that trajectories cross the surfaceΣ as they reach it, and that there
are finitelymany such crossing points (see for instance [28,25,29,30]). For this reason,wewill start our reviewby considering
discontinuous differential systems of the form (1.3) for which the transversality condition below is satisfied. Then, we will
also consider systems in which other kinds of behaviors may appear, for example sliding motion on Σ .

Definition 1 (Transversality at x ∈ Σ). For x ∈ Σ , there exists δ > 0 such that:

hT
x (x)f1(x) ≥ δ > 0, hT

x (x)f2(x) ≥ δ > 0. (1.5)

Naturally, (1.5) reflects our choice of labeling of R1 and R2 done in (1.4) (see Fig. 5).
Transversality, at x ∈ Σ , implies that all trajectories reach the switching surface from below (or above), and then cross

it. There is no solution which slides on Σ (see Section 7), and no spontaneous jump at x ∈ Σ .
Our definition of transversality guarantees that (locally) Σ is reached in finite time and it is particularly useful in the

analysis of numerical methods, see below. In principle, we could also call transversal the case of

hT
x (x)f1(x) > 0, hT

x (x)f2(x) > 0, (1.6)

which is the definition often adopted in the literature (e.g. [31]).

Author's personal copy

L. Dieci, L. Lopez / Journal of Computational and Applied Mathematics 236 (2012) 3967–3991 3971

Fig. 6. Local error.

2. Explicit Euler method: local error order reduction

Here we consider the discontinuous differential system (1.3) and the explicit Euler method for its numerical solution,
under the transversality assumption (1.5). As we will see, the method retains its usual order 1.

For didactical reasons, here we analyze Euler method rather than a general one-step method (see Section 3 and [28]),
since it requires only minimal technical machinery and it clarifies precisely how things go in general. In the present context,
the key features are:

• There is one (or several) special step(s) where the local truncation is of first order, rather than second.
• This loss of local order will not impact negatively error accumulation.

Let xk and xk+1 be the approximations of the exact solution respectively at tk and tk+1, with step τ = tk+1 − tk. Suppose
that h(xk)h(xk+1) < 0; this indicates that an event occurs (for the numerical scheme) in the time interval (tk, tk+1). For
t ∈ (tk, tk+1), denote by x(t; xk, tk) the exact solution of the local system x′

= f (x), x(tk) = xk, and let x̃(t) = xk+(t−tk)f1(xk)
be the continuous extension of the Eulermethod. Let ξ̄ ∈ (tk, tk+1)be the (unique) value forwhich h(x̃(ξ̄)) = 0. Let us further
assume that there exists (unique) ξ ∈ (tk, tk+1) for which h(x(ξ ; xk, tk)) = 0 (see Fig. 6).

The local truncation error is given by:

lk+1 = x(tk+1; xk, tk) − xk+1 = x(tk+1; xk, tk) − xk − τ f1(xk).

Taylor’s expansion of the (local) exact solution gives

x(tk+1; xk, tk) = x(ξ ; xk, tk) + (tk+1 − ξ)f2(x(ξ ; xk, tk)) + O((tk+1 − ξ)2),

x(ξ ; xk, tk) = xk + (ξ − tk)f1(xk) + O((ξ − tk)2).

Hence, from the last two formulas we have:

lk+1 = x(ξ ; xk, tk) + (tk+1 − ξ)f2(x(ξ ; xk, tk)) − xk − τ f1(xk) + O((tk+1 − ξ)2)

= (ξ − tk)f1(xk) + (tk+1 − ξ)f2(x(ξ ; xk, tk)) − τ f1(xk) + O((ξ − tk)2) + O((ξ − tk+1)
2)

= (tk+1 − ξ)[f2(x(ξ ; xk, tk)) − f1(xk)] + O(τ 2).

Now, rewrite

f1(xk) = f1(x(ξ ; xk, tk)) + Df1(x(ξ ; xk, tk))(xk − x(ξ ; xk, tk)) + O(∥xk − x(ξ ; xk, tk)∥2) = f1(x(ξ ; xk, tk)) + O(ξ − tk),

where Df1 is the Jacobian matrix of f1. Then, the local error expression becomes

lk+1 = (tk+1 − ξ)[f2(x(ξ ; xk, tk)) − f1(x(ξ ; xk, tk))] + O(τ 2),

from which

∥lk+1∥ ≤ τ J + O(τ 2), (2.1)

where

J = ∥f1(x(ξ ; xk, tk)) − f2(x(ξ ; xk, tk))∥,

is the jump of the vector field at the discontinuity point.
If we wish to give the local truncation error lk+1 in terms of the jump of the vector field at the numerical solution x̃(ξ̄),

we observe that:

(a) x(ξ ; xk, tk) = xk + (ξ − tk)f1(xk) + O((ξ − tk)2),
(b) x̃(ξ̄) = xk + (ξ̄ − tk)f1(xk),

Author's personal copy

3972 L. Dieci, L. Lopez / Journal of Computational and Applied Mathematics 236 (2012) 3967–3991

Fig. 7. Gobal error.

from which

x(ξ ; xk, tk) = x̃(ξ̄) + (ξ − ξ̄)f1(xk) + O((ξ − tk)2).

Thus,

lk+1 = (tk+1 − ξ̄)[f2(x̃(ξ̄)) − f1(x̃(ξ̄))] + (ξ̄ − ξ)[f2(x̃(ξ̄)) − f1(x̃(ξ̄))] + O(τ 2),

= (tk+1 − ξ̄)[f2(x̃(ξ̄)) − f1(x̃(ξ̄))] + O(τ 2),

since ξ̄ − ξ = O(τ 2) (see below for a verification of this fact). Therefore:

∥lk+1∥ ≤ τ J1 + O(τ 2),

where J1 = ∥f2(x̃(ξ̄)) − f1(x̃(ξ̄))∥.
Finally, let us verify that ξ − ξ̄ = O(τ 2). Let us observe that

h(x̃(ξ̄)) = h(xk) + hT
x (xk)(x̃(ξ̄) − xk) + O(∥x̃(ξ̄) − xk∥2), and so

0 = h(xk) + (ξ̄ − tk)hT
x (xk)f1(xk) + O((ξ̄ − tk)2),

since h(x̃(ξ̄)) = 0 and x̃(ξ̄) = xk + (ξ̄ − tk)f1(xk).
Similarly, we have

h(x(ξ ; xk, tk)) = h(xk) + hT
x (xk)(x(ξ ; xk, tk) − xk) + O(∥x(ξ ; xk, tk) − xk∥2)

0 = h(xk) + (ξ − tk)hT
x (xk)f1(xk) + O((ξ − tk)2),

since h(x(ξ ; xk, tk)) = 0 and x(ξ ; xk, tk) = xk + (ξ − tk)f1(xk) + O((ξ − tk)2).
Comparing these expressions, we get

0 = (ξ − ξ̄)hT
x (xk)f1(xk) + O(τ 2),

and then ξ − ξ̄ = O(τ 2), using hT
x (xk)f1(xk) ≠ 0 which is inferred from (1.5).

2.1. Global error

Now, we will estimate the global error Ek+1 at tk+1. The global error (see Fig. 7) at tk+1 is given by

Ek+1 = x(tk+1; x0, t0) − xk+1,

which may be written as

Ek+1 = Ak+1 + lk+1,

where

Ak+1 = x(tk+1; x0, t0) − x(tk+1; xk, tk), lk+1 = x(tk+1; xk, tk) − xk+1,

and lk+1 is the local error.
Now, let ξ such that h(x(ξ ; x0, t0)) = 0 and let ξ̂ such that h(x(ξ̂ ; xk, tk)) = 0.

Author's personal copy

L. Dieci, L. Lopez / Journal of Computational and Applied Mathematics 236 (2012) 3967–3991 3973

First, we are going to bound the quantity Ak+1.

Ak+1 = x(ξ ; x0, t0) + (tk+1 − ξ)f2(x(ξ ; x0, t0)) − x(ξ̂ ; xk, tk) − (tk+1 − ξ̂)f2(x(ξ̂ ; xk, tk)) + O(τ 2)

= x(tk; x0, t0) + (ξ − tk)f1(x(tk; x0, t0)) − xk − (ξ̂ − tk)f1(xk)

+ (tk+1 − ξ)f2(x(ξ ; x0, t0)) − (tk+1 − ξ̂)f2(x(ξ̂ ; xk, tk)) + O(τ 2)

= Ek + (ξ − tk)[f1x(tk; x0, t0) − f1(xk)] + (tk+1 − ξ)[f2x(ξ ; x0, t0) − f2(x(ξ̂ ; xk, tk))]

+ (ξ − ξ̂)f1(xk) + (ξ − ξ̂)f2(x(ξ̂ ; xk, tk)) + O(τ 2).

The functions f1 and f2 are Lipschitz and bounded in the regions R1 ∪Σ and R2 ∪Σ , respectively, so wemay assume that
there exist positive constantsM1,M2, L1, L2 for which

(a) ∥f1(xk)∥ ≤ M1,

(b) ∥f2(x(ξ̂ ; xk, tk))∥ ≤ M2,

(c) ∥f2(x(ξ ; x0, t0)) − f2(x(ξ̂ ; xk, tk))∥ ≤ L2∥x(ξ ; x0, t0) − x(ξ̂ ; xk, tk)∥,
(d) ∥f1(x(tk; x0, t0)) − f1(xk)∥ ≤ L1∥x(tk; x0, t0) − xk∥,

and from (c) it follows

(e) ∥f2(x(ξ ; x0, t0)) − f2(x(ξ̂ ; xk, tk))∥ ≤ L2∥x(ξ ; x0, t0) − x(ξ̂ ; xk, tk)∥
≤ L2∥x(tk; x0, t0) + (ξ − tk)f1(x(tk; x0, t0))

− xk − (ξ̂ − tk)f1(xk) + O(τ 2)∥

≤ L2∥Ek∥ + L1L2(ξ − tk)∥Ek∥ + L2|ξ − ξ̂ | ∥f1(xk)∥ + O(τ 2).

Thus, using (a)–(e) it follows that

∥Ak+1∥ ≤ ∥Ek∥ + (ξ − tk)L1∥Ek∥ + (tk+1 − ξ)

L2∥Ek∥ + L1L2(ξ − tk)∥Ek∥ + L2|ξ − ξ̂ | ∥f1(xk)∥


+ |ξ − ξ̂ |M1 + |ξ − ξ̂ |M2 + O(τ 2)

≤

1 + τL + L2τ 2/2


∥Ek∥ + 2|ξ − ξ̂ |M + tk+1 − ξL2|ξ − ξ̂ |M1 + O(τ 2),

where L = max {L1, L2} ,M = max {M1,M2}.
Finally, we note that |ξ − ξ̂ | = O(τ), simply because Euler method has order 1. Therefore, we get the following bound

∥Ak+1∥ ≤

1 + τL + L2τ 2/2


∥Ek∥ + O(τ). (2.2)

Hence, since

∥Ek+1∥ ≤ ∥Ak+1∥ + ∥lk+1∥,

we have

∥Ek+1∥ = O(τ).

We remark that there are two contributions to the O(τ) term in the global error. The first comes from |ξ − ξ̂ | = O(τ),
and this is due to having used a first order method (the estimate improves to O(τ p) for a method of order p). The second
contribution, however, comes from the jump and this cannot be improved by using some higher order method.

Finally, we observe that for the next step we have

∥Ek+2∥ ≤ (1 + τL2)∥Ek+1∥ + ∥lk+2∥,

where, now, ∥lk+2∥ = O(τ 2), because we are in a smooth region. However, since ∥Ek+1∥ = O(τ), then of course
∥Ek+2∥ = O(τ) as well; it is noteworthy that this first order behavior does not deteriorate further (of course, we need
to have just a few jumps, otherwise we will accumulate order τ contributions).

3. Mannshardt’s work

We now review Mannshardt’s pioneering work on the behavior of numerical schemes for discontinuous systems. As we
will clarify below, Mannshardt work may be regarded as both a time stepping and an event drivenmethod (see [28]).

The author assumes to have a discontinuous system in the form (1.3) and that the transversality condition (1.5) on Σ is
satisfied. Obviously, the transversality condition implies that each discontinuity point ξ is a transition point, that is h(x(t))
changes sign at t = ξ : h(x(ξ − τ))h(x(ξ + τ)) < 0, where τ is small. Of course, however, ξ depends on the solution and is
not known a priori.

Author's personal copy

3974 L. Dieci, L. Lopez / Journal of Computational and Applied Mathematics 236 (2012) 3967–3991

Similarly to what we did above for Euler method, Mannshardt observed that a Runge–Kutta (RK) method remains
convergent after having crossed the discontinuity, but only with order 1. However, he also realized that one can avoid
this order breakdown, if the discontinuity point is located with sufficient accuracy, and a restart process is enacted at the
discontinuity point. In this sense, Mannshardt’s work is in the category of event driven techniques.

For solving the discontinuous system (1.3) Mannshardt considered a one-step method:

xk+1 = xk + τkφ(τk; xk), k ≥ 0,

where φ(·) is the increment function, τk is the stepsize (bounded by τ), and tk+1 = tk +τk, for all k ≥ 0. Now, let φ1(·) be the
increment function of a one-step method of order p (for smooth problems) and use φ1 to integrate the smooth differential
system x′

= f1(x) in the region R1. In particular, consider the continuous approximation

χ1(t) = xk + (t − tk)φ1(t − tk; xk), t ∈ (tk, tk+1),

from which

χ1(tk+1) = xk + τkφ1(τk; xk) = xk+1.

Since h(xk) < 0, if we have h(xk+1) < 0, thenwe continue to integrate, otherwise there exists a value ξ̄ ∈ (tk, tk+1) such that
h(χ1(ξ̄)) = 0. In order to preserve the order p of the entire procedure, we need that the difference between the discontinuity
point ξ of the theoretical solution and the one ξ̄ of the numerical approximation to be of order p, that is ξ − ξ̄ = O(τ p). We
further notice that it is sufficient to compute an approximation ξ̃ of ξ̄ for which

ξ̃ − ξ̄ = O(τ p+1). (3.1)

And, to find ξ̃ , one can employ Newton’s method applied to the function γ (t) = h(χ1(t)):

ξi+1 = ξi −
γ (ξi)

γ ′(ξi)
= ξi −

h(χ1(ξi))

hT
x (χ1(ξi))f1(χ1(ξi))

, for i = 0, . . . , and ξ0 = tk. (3.2)

To reduce the expense due to function evaluations, Mannshardt proposed a simplified Newton method (where the
denominator remains fixed), that is:

ξi+1 = ξi −
γ (ξi)

γ ′(tk)
= ξi −

h(χ1(ξi))

hT
x (xk)f1(xk)

, for i = 0, . . . , and ξ0 = tk.

Mannshardt further proved that if one takes ξp instead of ξ̃ the estimate (3.1) holds.
Next, let x̃ = χ1(ξ̃) be the numerically computed point on the discontinuity surface, with an error of order O(τ p) with

respect the exact solution x(ξ ; x0, t0). Then, we can restart with initial condition (ξ̃ , x̃), solving the differential system in the
region R2. That is, we can consider the scheme

χ2(t) = x̃ + (t − ξ̃)φ2(t − ξ̃ ; x̃), for t ∈ (ξ̃ , tk+1),

and let

xk+1 = χ2(tk+1)

where φ2 is an increment function of order p (of course, this may be chosen to be the same as φ1).
The key result of Mannshardt is that ‘‘The order of this combined method is p, if φ1 and φ2 are of order p (applied to smooth

systems) and ξ̃ − ξ̄ = O(τ p+1)’’.
Mannshardt needs to assume that there is only one event in the time interval [tk, tk+1], which is a reasonable assumption.

In practice, if the number of events is finite in a finite time interval, then one can always choose a sufficiently small time
step so that there is at most one event per step.

Finally, we notice that since the event point is computed with accuracy O(τ p+1), this method can be thought of as
belonging to the class of time-stepping methods. (In principle, in order to have a real event driven method, the event point
should be computed ideally to machine precision.)

4. Gear–Østerby method

In 1984, Gear and Østerby proposed amethod inwhich the local error estimate is used to locate the event (see [25]). They
do not assume that there is an event function h, but suppose that the values of the vector field f are given, say by a black
box routine. Because they attempt to control the local error, their method may be regarded as one of the first time stepping
methods in the literature.

Their idea is as follows. In a standard multistep code for ODEs, the local error is estimated at each step to decide whether
to accept or reject the step, and whether to try a different step and/or order in the next step. The presence of a discontinuity
is signaled by a very large value of the local error estimate resulting in the rejection of the step and a drastic reduction of
the stepsize, and possibly also of the order. Back in the smooth region, it will be possible to build up the stepsize (and order)

Author's personal copy

L. Dieci, L. Lopez / Journal of Computational and Applied Mathematics 236 (2012) 3967–3991 3975

until the code again attempts to step over the discontinuity. The stepsize is reduced again and this process may be repeated
several times before the code successfully passes the trouble spot.

Here, we will recall just the case of ODEs where f is discontinuous at certain points, although in [25] the authors treat
more general cases of discontinuity of f . Gear and Østerby identify four main tasks in a numerical procedure:

(1) Detecting the discontinuity.
(2) Locating the discontinuity.
(3) Passing the discontinuity.
(4) Rebuilding the data after the discontinuity is passed.

The numerical method used is a predictor–corrector in PEC mode, where both the predictor and corrector have order p.
Applied to a smooth problem x′(t) = f (x(t)), the predictor is given by:

m
j=0

αP
j xk+j = τ

m−1
j=0

βP
j f (xk+j), αP

m = 1,

while the corrector is:
m
j=0

αjxk+j = τ

m
j=0

βj f (xk+j), αm = 1, (4.1)

and xk+j is the numerical solution at tk+j = tk + jτ , j = 0, . . . ,m.
Standard theory for the smooth case tells us that the local discretization error is

Cp+1 τ p+1 x(p+1)(tk) + O(τ p+2),

where Cp+1 is the error constant of the corrector.
We shall first see how the discontinuity impacts the local error and the local error estimate. As already remarked, Gear

and Østerby do not assume knowledge of an event function h, so that the specific discontinuity(-ies) become a function of
the integration time and of the specific trajectory one is following. Nevertheless, we still suppose to be integrating a system
like (1.3), with initial condition x0 ∈ R1, and f will change discontinuously when t reaches the value t = ξ (ξ is a function
of x0, but this dependence will be omitted).

Let us now assume that the discontinuity time (say, ξ) is in [tk+m−1, tk+m] for both the exact solution and the numerical
method. So, we can write (locally) the differential system as:

x′(t) = f (x) =


f1(x) when t < ξ,
f2(x) when t ≥ ξ,

(4.2)

with f1(·) ≠ f2(·). [We stress once more that ξ is not known in advance.] We will further assume that f1 extends smoothly
in R2, that is f1 has continuous derivatives of order p + 1 also past Σ , and that the transversality condition (1.5) is satisfied.

Next, we build a smooth ‘‘solution’’, denoted by xc(t), such that x′
c(t) = f1(xc(t)) for t ≥ ξ and xc(t) = x(t) for t < ξ .

Then, the predicted value xPk+m will not be affected by the discontinuity: xPk+m is actually an approximation to xc(tk+m) (see
Fig. 8).

On the other hand, the corrector uses the function value f2(xPk+m), which we rewrite as

f2(xPk+m) = f1(xPk+m) + [f2(xPk+m) − f1(xPk+m)],

so that the corrected value rewrites as

xk+m =

m−1
j=0

[−αjxk+j + τβj f1(xk+j)] + τβmf1(xPk+m) + τβm[f2(xPk+m) − f1(xPk+m)]. (4.3)

From this, we observe that the quantity
m−1
j=0

[−αjxk+j + τβj f1(xk+j)] + τβmf1(xPk+m)

is the predictor–corrector value at tk+m for the smooth problem x′
c(t) = f1(xc(t)). This is easy to handle, the key term to

estimate/bound is f2(xPk+m) − f1(xPk+m).
Now, if Milne’s device is adopted, the local error estimate is a multiple of the corrector–predictor difference, that is

γ (xk+m − xPk+m) = γ

m−1
j=0

[(αP
j − αj)xk+j + τ(βP

j − βj) f1(xk+j)]

+ γ τβmf1(xPk+m) + γ τβm[f2(xPk+m) − f1(xPk+m)]

= Cp+1 τ p+1 x(p+1)
c (tk) + O(τ p+2) + γ τβm[f2(xPk+m) − f1(xPk+m)],

Author's personal copy

3976 L. Dieci, L. Lopez / Journal of Computational and Applied Mathematics 236 (2012) 3967–3991

Fig. 8. Smooth continuation of x at the discontinuity point.

where the constant γ is Cp+1/(CP
p+1 − Cp+1), with CP

p+1 the constant error of the predictor (usually αj = αP
j , for j = 0,

1, . . . ,m).
To estimate the term f2(xPk+m) − f1(xPk+m), we observe that (again, x(·) and xc(·) are the local solutions)

f1(xPk+m) = f1(x(ξ)) + Df1(x(ξ))(xPk+m − x(ξ)) + · · ·

f2(xPk+m) = f2(x(ξ)) + Df2(x(ξ))(xPk+m − x(ξ)) + · · ·

where Df1(x(ξ)) and Df2(x(ξ)) are the Jacobian matrices of f1 and f2 at x(ξ).
Since tk+m − ξ = θτ , where θ ∈ (0, 1), it follows that xPk+m − x(ξ) = θτ f1(x(ξ)) + O(τ 2), so that

f2(xPk+m) − f1(xPk+m) = J + O(τ), (4.4)

where J = [f2(x(ξ)) − f1(x(ξ))]. So, the local error estimate becomes

γ (xk+m − xPk+m) = γ βmτ J + O(τ 2) + Cp+1 τ p+1 x(p+1)
c (tk) + O(τ p+2)

and the dominant term, O(τ), is due to the discontinuity of f .
The idea of Gear and Østerby is that a variable step code, which determines the stepsize by using the local error estimate,

will reduce the stepsize drastically because of the discontinuity, whereby automatically enforcing accuracy in spite of the
decrease in smoothness of the solution.

To find out what the local error actually is, notice that

f2(x(t)) = f1(x(t)) + J + O(τ), t ∈ (ξ , tk+m),

therefore

x(tk+m) = xc(tk+m) + θτ J + O(τ 2).

The predictor produces an approximation of xc(tk+m) such that

xPk+m = xc(tk+m) + O(τ p+1),

while the corrector will take the new value of f into account.
Thus, from (4.3) and (4.4) we have

xk+m = xc(tk+m) + βmτ J + O(τ 2) + O(τ p+1),

so that the local error is:

x(tk+m) − xk+m = (θ − βm)τ J + O(τ 2) + O(τ p+1)

and, being βm ∈ (0, 1], an upper bound for the dominant part of the local error is given by τ∥J∥.
This expression may be used to ensure that the local error will be kept below a specified tolerance ϵ when taking a step
across the discontinuity; we define the passing stepsize

τpass =
ϵ

∥J∥
,

so that if τ < τpass, the local error when passing the discontinuity will be less than ϵ.
Detecting a discontinuity. The presence of a discontinuity will be indicated by a large value of the local error estimate (LEE).
In turn, if a local error per step strategy is used, this will prompt a reduction in the stepsize according to a formula like

τnew =

 ϵ

∥LEE∥

1/(p+1)

× τold.

Author's personal copy

L. Dieci, L. Lopez / Journal of Computational and Applied Mathematics 236 (2012) 3967–3991 3977

An easy detection check for a discontinuity is thus that

τnew ≪ τold,

or that the local error estimate is much greater than the tolerance ϵ. However, we have to notice that these tests may
become enforced even if f is not discontinuous but just varies rapidly. Once we have found that there is a discontinuity of f
for t ∈ (tk+m−1, tk+m), then we need to locate it.
Locating a discontinuity. If an event function h : Rs

→ R exists, such that h(x(t)) = 0 at a discontinuity point in
(tk+m−1, tk+m), then, if the time step is sufficiently small,wewill have h(xk+m−1)h(xk+m) < 0, andwe canuse aNewton’s type
method, or any other root finding method, to locate ξ approximatively. For example, multistep methods for discontinuous
ODEs where an event function is used to detect the discontinuities have been used in [32,33,30].

Instead, Gear and Østerby are interested in the case in which no event function is known and the discontinuity points
have to be found using values of f only. In this case, a bisection type strategy on the stepsize may be used to reduce the
dimension of the interval containing ξ .

For efficiency reasons, when the stepsize is halved we should use the Nordsieck array technique in order to avoid to
compute new function evaluations (see [34]).
Passing the discontinuity. Since we employ the same method as before the discontinuity point ξ was located, and we have
halved the stepsize τ a number of times, say j, we expect that the local error estimate will be well below the tolerance ϵ as
long as we are to the left of ξ . Even at first order, the local error should not exceed 4−jϵ. Therefore, if a step passes the test
after at least two step halvings, say if

ϵ/10 ≤ ∥LEE∥ ≤ ϵ,

then we have passed the discontinuity and we can proceed to the restarting task.
Restarting, rebuilding data. Because of the discontinuity, the past values of x and f do not correspond to those of smooth
functions, but differ by terms of order O(τ) and O(1) respectively, although the local error is kept less than the tolerance
ϵ. Thus, because Euler explicit/implicit methods do not use past values, a safe strategy is to use explicit Euler method as
predictor and implicit Euler or the trapezoidal rule as corrector. Then, we can continue the integration using the same
process adopted in variable-step, variable-order, multistep methods. Of course, for this to work we must have passed the
discontinuity and must be using the correct branch of the function f .

5. Runge–Kutta time-stepping methods

Here we review the basics for the use of Runge–Kutta methods when the discontinuities are located by monitoring the
local truncation errors. Runge–Kuttamethods for discontinuous ODEs based on the control of the local truncation error have
been proposed by several authors, see for instance [35–37,29].

Consider the discontinuous system (4.2), and take an embedded pair of explicit s-stage Runge–Kutta methods of order
p and p̂ (and below we will think of the usual case when p̂ = p − 1 or p̂ = p + 1), given by the Butcher array
A = (aij) ∈ Rs×s, c = (ci) ∈ Rs, b = (bi) ∈ Rs, b̄ = (b̄i) ∈ Rs; see for instance the routines ODE23 or ODE45 routines of the
MATLAB ODESUITE package. Suppose that (tk, tk+1) is the interval where the discontinuity occurs, that x(tk)− xk = O(τ p∗

)
where p∗

= max{p, p̂}, and that the transversality condition (1.5) holds. Then, on a successful step the solution is advanced
with the higher order method:

xk+1 = xk + τ

s
i=1

bif (Xki),

where:

Xki = xk + τ

i−1
j=1

aijf (Xkj), i = 1, . . . , s.

Remark 5.1. We are supposing there is a nonempty subset I1 of the index set {1, . . . , s} such that f (Xkj) = f1(Xkj) when
j ∈ I1; that is, Xkj, with j ∈ I1, is the approximation of the solution at a value of t ∈ (tk, ξ). Similarly, there is a nonempty
subset I2 = {1, . . . , s} − I1 such that f (Xkj) = f2(Xkj) when j ∈ I2; that is, Xkj, with j ∈ I2 is the approximation of the solution
at a value of t ∈ (ξ , tk+1).

An estimate of the local truncation error (LEE) may be computed as the difference of the solutions of orders p and p̂,
that is:

LEE = τ

s
i=1

(bi − b̄i) f (Xki).

Author's personal copy

3978 L. Dieci, L. Lopez / Journal of Computational and Applied Mathematics 236 (2012) 3967–3991

The error estimate LEE is compared to the accuracy level ϵ which is derived from a user prescribed accuracy parameter tol
by a mixture of relative and absolute criterion:

ϵ = tolmax{1, ∥x∥∞}.

If the error estimate is smaller than the prescribed level ϵ,

LEE < ϵ, (5.1)

then the numerical solution is advanced using the time step τ . Otherwise, the stepsize is reduced according to the usual
criterion

τnew = C
 ϵ

∥LEE∥

1/(p∗)

× τold,

where 0 < C < 1 is some constant to ensure a cautious stepsize choice. Hence a new estimate LEE is computed and tested.
For smooth systems, the quantity

LEE
τ

=

s
i=1

(bi − b̄i) f (Xki)

approaches 0 when τ → 0, while for discontinuous systems (see Remark 5.1) this quantity approaches the jump of the
vector field f at the discontinuity point. Thus, the algorithm can only pass the accuracy test (5.1) when the stepsize τ is
decreased to

τpass =
ϵ

∥J∥
,

where J = limτ→0
LEE
τ

.

6. Event location procedure

Event location arises naturally inmanymodels as awayof dealingwithdiscontinuous behaviors. A nice survey ofmethods
that have been proposed for dealing with it may be found in [38]. The task also arises in the solution of delay differential
equations because of discontinuities that are induced by a lack of smoothness and propagated by the delays [39]. Even the
popular ODESUITE of Matlab codes provides event detection as an option.

When an event function h(x) exists, in order to derive an effective procedure, the routine which locates the discontinuity
point ξ̄ should be inexpensive but very accurate. For instance, in the simplified Newton method (3.2), the evaluation of
χ1(ξ̃i) needs additional evaluations of the vector field f1, and this could lead to an expensive procedure with a large number
of function evaluations. An interpolation or a continuous extension of the numerical solution given by a one-stepmethod can
be used to locate the discontinuity point x̃ in the discontinuity interval (tk, tk+1). For instance, consider a s-stage Runge–Kutta
method (of order p) given by the Butcher array A = (aij) ∈ Rs×s, c = (ci) ∈ Rs, b = (bi) ∈ Rs and its continuous extension:

xk+1(σ) = xk + τ

s
i=1

b∗

i (σ)Ki, 0 ≤ σ ≤ 1,

where:

Ki = f1


xk + τk

i−1
j=1

aijKj


, i = 1, . . . , s

and b∗

i (σ) are polynomials in σ such that b∗

i (1) = bi and

xk+1(σ) − x(tk + στ) = O(τ p∗
+1), 0 ≤ σ ≤ 1,

with p∗
≤ p. Thus, in order to locate ξ̄ we may find a root of h(xk+1(σ)). Such a continuous extension does not require

additional function evaluations, but it must provide a point on Σ with an error which preserves the accuracy of the
underlying one-step method, that is of order O(τ p); this means that p∗ has to be equal to p (see for instance [37,40,41]).
The theory of continuous Runge–Kutta methods tells us that for explicit Runge–Kutta methods of order up to p = 3 there is
a continuous extension of the same order requiring no additional function evaluations (e.g., see [42]).

Often, in the context of linear multistep methods a continuous approximation of the numerical solution derives directly
from the numerical scheme, which is based on polynomial interpolation of the vector field values; e.g., see the Adams
formulas. So, in these cases, if an event function exists, it is possible to use such a continuous numerical solution to find
the event point in the discontinuity interval without additional function evaluations (see [30]).

Author's personal copy

L. Dieci, L. Lopez / Journal of Computational and Applied Mathematics 236 (2012) 3967–3991 3979

Table 1
γi(σ) for the continuous approximation of AB methods.

i 0 1 2 3 4

γi(σ) σ σ 2

2
σ 3

6 +
σ 2

4
σ 4

24 +
σ 3

6 +
σ 2

6
σ 5

120 +
σ 4

16 +
11
72σ 3

+
σ 2

8

Fig. 9. Two event points in the discontinuity interval.

For instance, if the discontinuity interval is (tk, tk+1), then them-step Adams–Bashforth method (AB), which is a method
of order p = m, reads:

xk+1 = xk + τ

m−1
i=0

γ ∗

i ∇
ifk, (6.1)

where ∇
0fk = fk, ∇fk = fk − fk−1 and ∇

ifk = ∇(∇ i−1fk), while γ ∗

i = (−1)i
 1
0


−r
i


dr , for i = 0, 1, . . . ,m − 1, (see [34]).

Thus, if we need to approximate the solution at tk + στ , for σ ∈ (0, 1), it is natural to use the following continuous
approximation:

xk+1(στ) = xk + τ

m−1
i=0

γi(σ)∇ ifk, σ ∈ (0, 1), (6.2)

where γi(σ) = (−1)i
 σ

0


−r
i


dr , for i = 0, 1, . . . ,m − 1 (see Table 1 for the first few γi(σ) functions). The numerical

method in (6.2) may be interpreted as a variable stepsize ABmethod where the size of the interpolation grid is constant and
equal to τ , except in the last step, when it is equal to στ . It is easy to see that the local truncation error of the numerical
solution (6.2) is O(τm+1) for every σ ∈ (0, 1). Thus, an event point may be computed as a root of the scalar polynomial (of
degree m) H(σ) = h(xk+1(στ)). Of course, evaluation of (6.2) at a value σ ∈ (0, 1) does not require additional function
evaluations with respect to the ones need to compute xk+1 as noted in [43].

We conclude this discussion on event detection by cautioning that several critical situations can appear in the detection of
the discontinuity points. For instance, an event may occur as a double root, or multiple events can occur if the discontinuity
interval [tk, tk +τ] is not sufficiently small. In such cases the numerical methodmay fail to notice that an event has occurred
because there is no change sign for h(x) (see Fig. 9); because of this, the assumption that events are isolated is amore serious
matter in practice than it might at first seem. From the practical andmathematical points of view, one could very small time
steps or require some form of monotonicity for the numerical solution on the discontinuity interval in order to guarantee
only one intersection with Σ . In [44], Carver suggests an interesting approach to event location: to add the differential
equation

d
dt

z = zTx f , where z = h(x),

to the original differential system. Thisway, the stepsizewill be selected not only to take into account changes in the solution
x(t) but also in the variable z(t) = h(x(t)).

When the differential discontinuous system has many discontinuity points in the time interval, then the system is said
to have a chattering behavior (see [45,5,46]). Then, the use of a event location routine can lead to an expensive procedure
and a time-stepping method may be preferable.

Example 6.1 (Chattering). Consider the following IVP
x′

1 = −x1 + x2, x1(0) = 0,
x′

2 = −ω2x1 − sign(x1), x2(0) = 0.2, (6.3)

forω = 10, where sign(0) = [−1, 1]. Here, we have a discontinuous system exhibiting only transversal intersections on the
discontinuity line x1 = 0. There is chattering behavior, caused by accumulation of event points (see Fig. 10). In this example,
the solution behaves as a damped oscillator, and it approaches the origin as t → ∞ with a chattering behavior around the
discontinuity line x1 = 0.

Author's personal copy

3980 L. Dieci, L. Lopez / Journal of Computational and Applied Mathematics 236 (2012) 3967–3991

Fig. 10. Example 6.1. Chattering behavior.

7. Numerical solution of discontinuous Filippov systems

In the discontinuous differential system (1.3), f (x) is not well defined when x is on the discontinuity surface Σ . A way to
define the vector field on Σ is to consider the Filippov approach, that is the set valued extension F(x) below:

x′
∈ F(x) =

f1(x), x ∈ R1
co {f1(x), f2(x)} , x ∈ Σ

f2(x), x ∈ R2,
(7.1)

where co(A) denotes the smallest closed convex set containing A. In our particular case:

co {f1, f2} =

fF : x ∈ Rn

→ Rn
: fF = (1 − α)f1 + αf2, α ∈ [0, 1]


. (7.2)

The extension of a discontinuous system (1.3) into a convex differential inclusion (7.1) is known as Filippov convexification.
Existence of solutions of (7.1) can be guaranteed with the notion of upper semi-continuity of set-valued functions (see
[19,20]). A solution in the sense of Filippov is an absolutely continuous function x : [0, τ] → Rn such that x′(t) ∈ F(x(t))
for almost all t ∈ [0, τ].

Now, consider a trajectory of (1.3), and suppose that x0 ∉ Σ , and thus, without loss of generality, we can think that
x0 ∈ R1, that is h(x0) < 0. The interesting case is when, starting with x0, the trajectory of x′

= f1(x), x(0) = x0, reaches Σ

(in finite time). At this point, one must decide what happens next. Loosely speaking, there are two possibilities: (a) we leave
Σ and enter into R2 (or, less likely, we re-enter in R1); (b) we remain in Σ with a well defined vector field. Filippov devised
a very powerful 1st order theory which helps decide what to do in this situation, and how to define the vector field in case
(b). We summarize it below.

Let x ∈ Σ and let n(x) be the unit normal toΣ at x, that is n(x) =
hx(x)

∥hx(x)∥
. Let nT (x)f1(x) and nT (x)f2(x) be the components

of f1(x) and f2(x) onto the normal direction (see Fig. 11).
Transversal intersection. (See Definition 1.) In case in which, at x ∈ Σ , we have

nT (x)f1(x)

nT (x)f2(x)


> 0, (7.3)

then we will leave Σ . We will enter R1, when nT (x)f1(x) < 0, and will enter R2, when nT (x)f1(x) > 0. In the former case we
will have (1.3) with f = f1, in the latter case with f = f2. Any solution of (1.3) with initial condition not in Σ , reaching Σ at
a time t̄ , and having a transversal intersection there, exists and is unique.

Sliding mode. In case in which, at x ∈ Σ , we have
nT (x)f1(x)


·

nT (x)f2(x)


< 0, (7.4)

then we have a so-called sliding mode through x.
An attracting Sliding Mode occurs if

nT (x)f1(x) > 0 and nT (x)f2(x) < 0, x ∈ Σ, (7.5)

Author's personal copy

L. Dieci, L. Lopez / Journal of Computational and Applied Mathematics 236 (2012) 3967–3991 3981

Fig. 11. Vector field orientation: transversal and sliding case.

where the inequality signs depend of course on the definition of R1,2 in (1.4). When (7.5) is satisfied at x0 ∈ Σ , a solution
trajectory which reaches x0 does not leave Σ , and will therefore have to move along Σ: sliding motion. During the sliding
motion the solution will continue along Σ with time derivative fF given by:

fF (x) = (1 − α(x))f1(x) + α(x)f2(x). (7.6)

Here, α(x) is the value for which fF (x) lies in the tangent plane Tx of h(x) at x, that is the value for which nT (x)fF (x) = 0. This
gives

α(x) =
nT (x)f1(x)

nT (x)(f1(x) − f2(x))
. (7.7)

Observe that a solution having an attracting sliding mode exists and is unique, in forward time.
We have a repulsive sliding modewhen

nT (x)f1(x) < 0 and nT (x)f2(x) > 0, x ∈ Σ . (7.8)

Repulsive slidingmodes do not lead to uniqueness (at any instant of time onemay leavewith f1 or f2), andwewill not further
consider repulsive sliding motion in this work.

Summarizing, in this section we consider solutions of (1.3) which will exhibit either transversal intersection or attractive
slidingmode onΣ . These will generally be continuous, but not differentiable, functions. Moreover, wewill henceforth focus
on the case in which we reach Σ coming from R1 and we will restrict to the case in which f1 reaches Σ not tangentially. To
be precise, we will characterize the attractivity of Σ from R1 by the following assumption:

There exists a strictly positive constant δ, such that for all x ∈ R1 ∪ Σ , and sufficiently close to Σ , we have

hT
x (x)f1(x) ≥ δ > 0. (7.9)

Observe that, since (for a trajectory in R1)
d
dt

h(x) = hT
x (x)x

′
= hT

x (x)f1(x),

then (7.9) implies that the function h monotonically increases along a solution trajectory in R1 (and close to Σ), until
eventually the trajectory hits Σ non-tangentially. A ‘‘discrete analog’’ of this property is the key to producing appropriate
numerical schemes.

7.1. A numerical method

The discussion in this section is done with reference to the model problem (1.3), and we will use the notation therein.
We will be mainly concerned with the different tasks of a numerical procedure for a discontinuous differential system of
Filippov typewhere different behaviors (transversal intersections, slidingmotions, exits from the discontinuity surface, etc.)
are allowed. A MATLAB code for the numerical solution of Filippov systems, based on an event drivenmethod, may be found
in [47].

A numerical procedure for this type of problem will need to accomplish the following tasks (see [48]):

(i) Integration outside Σ;
(ii) Accurate location of points on Σ reached by a trajectory;
(iii) Control of the transversality or sliding condition as one reaches Σ;
(iv) Integration on Σ (sliding mode);
(v) Control of exit conditions and decision of whether or not we should leave Σ .

Author's personal copy

3982 L. Dieci, L. Lopez / Journal of Computational and Applied Mathematics 236 (2012) 3967–3991

In order to explain each task, as model schemewe consider the explicit midpoint rule, which is a 2nd order Runge–Kutta
scheme with a simple continuous extension of the same order. The extension itself is useful to find the event points, that
now will be both entry and exit points to the surface Σ . The basic scheme for x′

= f1(x), with stepsize τ , and initial value
x0 ∈ R1, has the form

x1 = x0 + τ f1(x02), x02 = x0 +
τ

2
f1(x0), (7.10)

and the second order continuous extension is

x1(σ) = x0 + σ


1 −
σ

τ


f1(x0) +

σ

τ
f1(x02)


, ∀σ ∈ [0, τ]. (7.11)

7.2. Integration outside Σ

Integration of (1.3)while the solution remains inR1, orR2, is not different than standard numerical integration of a smooth
differential system. Therefore, the only interesting case to consider is when, while integrating (say) the system with f1, we
end up reaching/crossing the surface Σ , that is until h(x0)h(x1) < 0. If we have h(x1) = 0, it means that the discontinuity
(x1) point is already found.

7.3. Location of points on the surface Σ

We have to find a root ξ̄ of the scalar function
H(σ) = h(x1(σ)), (7.12)

x1(σ) given by (7.11) where σ will belong to the interval (0, τ). It is desirable to find a root ξ̄ within machine precision, to
ensure that the point x1(ξ̄) is on Σ and avoid numerical oscillations during integration on Σ . Of course, a simple bisection
approach can be used, but we eventually resorted (in order to have a faster convergence) to the secant method:

ξi+1 = ξi −
(ξi − ξi−1)

H(ξi) − H(ξi−1)
H(ξi), i ≥ 0, ξ0 = 0, ξ1 = τ .

Remark 7.1. As we have observed in Section 6, by using the continuous extension (7.11), we avoid computing the vector
field f1 except at points where we did for the original scheme.

7.4. Integration on Σ

Once we have a point x̄ on Σ , we have to decide if we will need to cross Σ or slide on it. Letting
gi(x) = nT (x)fi(x), i = 1, 2,

then we check if g1(x̄)g2(x̄) is (strictly) positive or negative. If g1(x̄)g2(x̄) > 0, then we integrate the system:

x′
= f2(x), x(0) = x̄. (7.13)

Instead, if g1(x̄)g2(x̄) < 0, we will have an attractive sliding mode and integrate the system:

x′
= fF (x), x(0) = x̄, (7.14)

where fF (x) is the sliding Filippov vector field.
Suppose that x̄ is onΣ and that we have a slidingmode solution.Whenwe compute the approximation x1 of the solution

x(τ) by the explicitmidpointmethod, in general the vector x1 will not lie onΣ . To remedy this situation,we project the value
x1 back onto Σ , so to avoid that the numerical solution leaves it. Moreover, even the intermediate stage value x0 +

τ
2 fF (x0)

in general will not be on Σ , and thus before computing x1 we project the stage value onto Σ as well. Succinctly, one step of
the projected midpoint scheme on Σ is expressed as:
1. x̂02 = x0 +

τ
2 fF (x0);

2. x02 = P(x̂02);
3. x̂1(τ) = x0 + τ fF (x02);
4. x1(τ) = P(x̂1(τ));

where P(y) denotes the Euclidean projection onto Σ . In a similar way, we define the projected continuous extension of the
method as

x1(σ) = P

x0 + σ


1 −

σ

τ


f1(x0) +

σ

τ
f1(x02)


, σ ∈ [0, τ], (7.15)

where it is understood that the value x02 is the projected value.
It is worth observing that the projection operator does not change the overall order of the method which remains 2.

(Of course, if h(x) is linear with respect to x, that is if Σ is flat, then no projection is required because the numerical solution
x1(τ) will automatically remain on Σ .) The issue of how to do the projection, and its associated expense, is discussed in
Section 7.6.

Author's personal copy

L. Dieci, L. Lopez / Journal of Computational and Applied Mathematics 236 (2012) 3967–3991 3983

7.5. Exit conditions

While we integrate on Σ , we will monitor if we have to continue sliding on it, or if we need to leave Σ . Once the point x1
on Σ has been computed, we need to check the first order exit conditions: that is, if g1(x1)g1(x0) < 0 or g2(x1)g2(x0) < 0. If
neither of these is true, we continue integrating on Σ . To fix ideas, suppose, instead, that g1(x1)g1(x0) < 0. In this case, we
seek a zero of the function

g1(x1(σ)), σ ∈ [0, τ], with x1(σ) from (7.15).

Notice that the function g1(x1(σ)) depends continuously on σ and changes sign at the endpoints. As before, wemay use the
secant method to find a root. Once this zero is found, sat at σ̄ , we will leave Σ and proceed integrating in R1 (assuming that
g2(x1(σ̄)) < 0). Similar reasoning applies if it is g2 to change sign at x0 and x1.

7.6. Projection on Σ

The projection on Σ is done in the standard way (e.g., see [38,49]), with some simplifications due to the specific nature
of our problem.

If x̂ is a point close toΣ , then the projected vector x = P(x̂) onΣ is the solution of the following constrainedminimization
problem

min
x∈Σ

e(x), where e(x) =
1
2
(x̂ − x)T (x̂ − x).

By using the Lagrange’s multiplier’s method, we have to find the root of

G(x, λ) =


ex(x) + λhx(x)

h(x)


,

where λ ∈ R. Consider Newton’s method to compute the root of G(x, λ):

G′(xk, λk)


1xk

1λk


= −G(xk, λk), k ≥ 0,

where 1xk = xk+1
− xk, 1λk

= λk+1
− λk, for k ≥ 0, and

G′(x, λ) =


I + λhxx(x) hx(x)

hT
x (x) 0


,

where hxx is the Hessian matrix of h.
To avoid having to solve a true linear system at each k, we actually use the following simplified Newton iteration

I hx(xk)
hT
x (x

k) 0


1xk

1λk


= −


x̂ − xk + λkhx(xk)

h(xk)


;

this is legitimate, since we expect that the value of λ will be close to 0 and a few iterates are typically needed to converge
to the point on Σ . Observe that the linear system we solve has a coefficient matrix with a simple structure and a simple
factorization:


I b
bT 0


=


I 0
bT 1

 
I b
0 −bT b


.

Remark 7.2. As alternative to projecting onto Σ , in order to remain close to Σ one may modify the system as in

x′
= fF (x) − µh(x)hx(x), x(0) = x̄,

(µ is a suitable positive constant) which is a technique used in numerical methods for differential–algebraic equations
(see [50]).

7.7. The oscillatory behavior of an explicit method

We need to stress that if, during the sliding mode, the numerical solution obtained by the explicit midpoint scheme (or
by any other explicit method) is not projected back onto Σ , then oscillations around Σ will appear (numerical chattering
behavior).

Example 7.3. In order to observe this phenomenon, let us consider the brick problem of Example 1.3 and suppose that
sliding conditions are satisfied. Let us fix two different initial conditions v0 = ±1,m = 1, θ = π/6 and ν = 1. In Fig. 12 we
show the numerical approximations of v(t), corresponding to the initial conditions v0 = 1 and v0 = −1, obtained by using
the explicit midpoint method applied with stepsize τ = 1/100. Similar results are obtained with smaller stepsize.

Author's personal copy

3984 L. Dieci, L. Lopez / Journal of Computational and Applied Mathematics 236 (2012) 3967–3991

Fig. 12. Attractive sliding without projection.

Now, we are going to show that these oscillations will disappear when τ → 0. More precisely, below we will show that
the average of the numerical vector field approaches the Filippov sliding vector field when τ → 0.

Utkin in [10] clarified this behavior for the explicit Euler scheme. Below, we prove the result for the explicit midpoint
method. To proceed, we need to assume that the vector field f1(x) (f2(x)) may be evaluated at points above (below), but
close to, the discontinuity surface Σ . This is the main difference with respect the explicit Euler method where this extra
assumption is not required.

Let δ > 0 be sufficiently small and consider the surfaces

Σ±δ =

x ∈ Rn

| h(x) = ±δ

. (7.16)

Let x0 be an initial point on Σ−δ (that is h(x0) = −δ) and consider one step of the explicit midpoint method with stepsize τ :

x1 = x1(τ), x1(τ) = x0 + τ f1

x0 +

τ

2
f1(x0)


. (7.17)

Now, if x1 is in the region R2, then we would be getting the next approximation x2 as

x2 = x2(τ), x2(τ) = x1 + τ f2

x1 +

τ

2
f2(x1)


. (7.18)

Let us suppose that Σ is attracting all along the numerical trajectory x1(χ), as expressed by the following condition:

hT
x (x1(χ))x′

1(χ) > 0, χ ∈ [0, τ]. (7.19)

Similarly, let us suppose that Σ is attracting all along the numerical trajectory x2(χ) as expressed by:

hT
x (x2(χ))x′

2(χ) < 0, χ ∈ [0, τ]. (7.20)

Notice that, because of the attractivity of the discontinuity surface Σ , the exact solution satisfies conditions similar to
(7.19) and (7.20); see (7.9).

By Taylor’s expansion, we can write

h(x1(τ)) = h(x0) + τhT
x (x1(χ))x′

1(χ), where x1(χ) ∈ [x0, x1(τ)], (7.21)

and now we consider the value τ1 which moves x0 on Σδ , that is

τ1 =
2δ

hT
x (x1(χ1))x′

1(χ1)
, x1(χ1) ∈ [x0, x1(τ1)], (7.22)

and τ1 is strictly positive because of (7.19).

Author's personal copy

L. Dieci, L. Lopez / Journal of Computational and Applied Mathematics 236 (2012) 3967–3991 3985

Fig. 13. Explicit midpoint method around a discontinuity surface.

We now apply the explicit midpoint method at x1(τ1), which is a point in the region R2:

x2(τ) = x1(τ1) + τ f2

x1(τ1) +

τ

2
f2(x1(τ1))


. (7.23)

Again, by Taylor’s expansion

h(x2(τ)) = h(x1(τ1)) + τhT
x (x2(χ))x′

2(χ), where x2(χ) ∈ [x1(τ1), x2(τ)], (7.24)

and we consider the value τ2 which moves x1(τ1) on Σ−δ , that is:

τ2 =
−2δ

hT
x (x2(χ2))x′

2(χ2)
, x2(χ2) ∈ [x1(τ1), x2(τ2)], (7.25)

and τ2 is strictly positive because of (7.20); see Fig. 13.
Observe that

τ1 + τ2 = 2δ
hT
x (x2(χ2))x′

2(χ2) − hT
x (x1(χ1))x′

1(χ1)

hT
x (x1(χ1))x′

1(χ1) · hT
x (x2(χ2))x′

2(χ2)
, (7.26)

and therefore
x2(τ2) − x0

τ2 + τ1
=

x2(τ2) − x1(τ1) + x1(τ1) − x0
τ2 + τ1

=
1
2δ

hT
x (x1(χ1))x′

1(χ1) · hT
x (x2(χ2))x′

2(χ2)

hT
x (x2(χ2))x′

2(χ2) − hT
x (x1(χ1))x′

1(χ1)

×


2δ

hT
x (x1(χ1))x′

1(χ1)
f1(x02(τ1)) −

2δ
hT
x (x2(χ2))x′

2(χ2)
f2(x12(τ2))


=

hT
x (x2(χ2))x′

2(χ2)

hT
x (x2(χ2))x′

2(χ2) − hT
x (x1(χ1))x′

1(χ1)
f1(x02(τ1))

−
hT
x (x1(χ1))x′

1(χ1)

hT
x (x2(χ2))x′

2(χ2) − hT
x (x1(χ1))x′

1(χ1)
f2(x12(τ2))

where x02(τ1) = x0 +
τ1
2 f1(x0), and x12(τ2) = x1(τ1) +

τ2
2 f2(x1(τ1)).

Now, when δ → 0, then x0 ∈ Σ, τ1, τ2 → 0 and x02(τ1), x12(τ2), x1(τ1), x1(χ1), x2(τ2), x2(χ2) → x0, x′

1(χ1) →

f1(x0), x′

2(χ2) → f2(x0). Hence, it follows that

lim
δ→0

x2(τ2) − x0
τ2 + τ1

=
hT
x (x0)f2(x0)

hT
x (x0)f2(x0) − hT

x (x0)f1(x0)
f1(x0) −

hT
x (x0)f1(x0)

hT
x (x0)f2(x0) − hT

x (x0)f1(x0)
f2(x0),

that is

lim
δ→0

x2(τ2) − x0
τ2 + τ1

= (1 − α(x0))f1(x0) + α(x0)f2(x0),

where

α(x0) =
hT
x (x0)f1(x0)

hT
x (x0)f1(x0) − hT

x (x0)f2(x0)
,

given by (7.7). Thus

lim
δ→0

x2(τ2) − x0
τ2 + τ1

= fF (x0)

which is the Filippov’s sliding vector as claimed.

Author's personal copy

3986 L. Dieci, L. Lopez / Journal of Computational and Applied Mathematics 236 (2012) 3967–3991

Fig. 14. Limit cycle with sliding segment (left) and approaching it through crossing and sliding (right).

Example 7.4 (Sliding on a Line-Segment). This simple example is one which we can understand by hand calculation and it
is helpful to illustrate the different tasks of our numerical procedure. It is an example in the same flavor of a problem in
[24,17] (the so-called stick-slip system). We have the two-dimensional system

x′
=


x′

1
x′

2


=


f1(x), h(x) < 0,
f2(x), h(x) > 0,

with

f1(x) =

 x2

−x1 +
1

1.2 − x2

 , f2(x) =

 x2

−x1 −
1

0.8 + x2

 ,

and the surface Σ is defined by the zero set of h(x) = x2 − 0.2. We notice that hx(x) = [0 1]T , and thus on Σ we have

hT
x (x)f1(x) = −x1 + 1, hT

x (x)f2(x) = −x1 − 1,

and so there will be an attractive sliding mode on Σ when x1 ∈ (−1, 1). The sliding vector field on Σ is

fF (x) =


x2
0


=


0.2
0


.

Thus, onΣ , the x1-component of the solutionwill grow linearly until reaching the value x1 = 1, atwhich point the trajectory
will leave Σ , with vector field f1. In Fig. 14 we show, in the phase space, the numerically computed limit cycle for this
problem, as well as a typical trajectory which reaches the limit cycle through previous crossing of Σ and sliding on it.
Obviously, at the points in which we enter the surface Σ there is lack of differentiability of the solution, whereas at the
value x1 = 1, the solution leaves the surface differentiably.

Remark 7.5. Recently, Filippov’s systems with solutions sliding on the intersection of more than one discontinuity surface
have also been studied. In this case, the still unsettled challenging task is to be able to define the sliding vector field on the
discontinuity surface, since Filippov’s theory leads to ambiguous sliding vector fields (see [48,51]).

8. One-sided methods

In some instances, the vector field f1 (respectively, f2) cannot be extended smoothly outside R1∪Σ (respectively, R2∪Σ),
or, even if it may be extended, the physical features of themodel may prohibit evaluation of f1 above (respectively, f2 below)
Σ . See, for instance, the interesting examples in Mechanics and Robotics given in [32,33,52].

Example 8.1. The following dynamical system exemplifies this situation:

x′
=


x

1 − t

(2k+1)/2
, k = 0, 1, 2, . . . , when t ≤ 1

0, when t > 1.
(8.1)

Note that the vector field in (8.1) has k continuous derivatives at t = 1. The example is an extension of one considered
in [53] where the authors considered the case of k = 0.

Author's personal copy

L. Dieci, L. Lopez / Journal of Computational and Applied Mathematics 236 (2012) 3967–3991 3987

This system can be written in the form of (1.3) by letting x1 = x, x2 = t:

f1(x1, x2) =


x1(1 − x2)

2k+1
2

1


, f2(x1, x2) =


0
1


, (8.2)

with discontinuity function h(x1, x2) = x2 − 1. Of course, f1 cannot be computed when x2 > 1.

Thus, onemay be unwilling to consider numerical methods (unlike, say, [38,28,30]) that require that f1 extends smoothly
outside R1 ∪ Σ . For this reason, below we consider one-sided numerical schemes in which we do not need to compute
the vector field f1 outside R1 ∪ Σ . In particular, we will study numerical procedures in which the discontinuity surface is
approached from one side. These procedures compute the event or discontinuity points, and therefore they belong to the
class of event drivenmethods and make sense only if on the time interval of interest there are finitely many event points.

Below, we review results from [54] where the class of general explicit Runge–Kutta (ERK) schemes has been studied and
conditions under which these methods approach the discontinuity surface from one side have been derived. As illustration
of this general result, we will consider a subclass of sub-diagonal ERK methods, that are methods for which, in the Butcher’s
tableau, only the entries in the first sub-diagonal are nonzero. This specific class of ERK schemes allows for recursive
arguments of proof, as well as modularity in the implementation of the schemes.

8.1. General Explicit Runge–Kutta methods

Let us consider the general explicit Runge–Kutta (ERK) scheme defined by the Butcher’s tableau

0 0 0 0 · · · 0
c2 a21 0 0 · · · 0
c3 a31 a32 0 · · · 0
. . . · · · · · · · · · · · · · · ·

cs as1 as2 · · · as,s−1 0
b1 b2 · · · · · · bs

.

To simplify the discussion we start with x0 in the region R1 and suppose that x1 the numerical solution given by the ERK
method with stepsize τ is in R2; that is (0, τ) is the discontinuity interval. One step of the ERK method starting with x0 may
be written as:

x1 = x0 + τ

s
i=1

bi f1(yi), (8.3)

with

y1 = x0, yi = x0 + τ

i−1
j=1

ai,j f1(yj), i = 2, . . . , s. (8.4)

Of course all points x1 and y2, . . . , ys may be seen as functions of the stepsize τ , that is x1 = x1(τ) and yi = yi(τ),
i = 2, . . . , s.

Themain idea is tomake sure that f1 can be evaluated at all internal stages y2, . . . , ys, so that the numerical solution x1(τ)
may be computed. Clearly, as long as all stage values yj’s and x1 are in R1, the numerical integration can proceed. Otherwise,
we need to consider several different cases.
Case 1. Let us suppose (see Fig. 15 on the left):

(1.a) h(yi(σ)) ≤ 0 for 0 ≤ σ ≤ τ and i = 2, . . . , s;
(1.b) h(x1(τ)) > 0.

In this case, the numerical solution with stepsize τ , x1(τ), is above Σ , while all internal stage values (for all σ ∈ [0, τ]) are
below Σ . This is the simplest case. Letting x1(σ) = x0 + σ

s
i=1 bif1(yi(σ)), σ ∈ [0, τ], one can use a root finding routine

(say, bisection or the secant method) to compute a value η such that the scalar function H(σ) = h(x1(σ)) vanishes, that is
x1(η) on Σ .

Finally, we notice that the value η ∈ [0, τ] which gives h(x1(η)) = 0 is unique if

d
dσ

h(x1(σ)) = hT
x (x1(σ))x′

1(σ) > 0, ∀σ ∈ [0, τ], (8.5)

and we recognize this formula as the numerical realization of (7.9).
Case 2. Let us suppose (see Fig. 15 on the right):

(2.a) h(yi(σ)) ≤ 0 for 0 ≤ σ ≤ τ and i = 2, . . . , s − 1;
(2.b) h(ys(τ)) > 0.

Author's personal copy

3988 L. Dieci, L. Lopez / Journal of Computational and Applied Mathematics 236 (2012) 3967–3991

Fig. 15. General explicit RK method: case 1 and 2.

In other words, we have that the last stage value ys(τ) is above Σ , while all the previous stage values are below Σ for all
σ ∈ [0, τ]. Let us now assume that

d
dσ

h(ys(σ)) = hT
x (ys(σ))y′

s(σ) > 0, ∀σ ∈ [0, τ],

which we again recognize as a monotonicity condition on the stage value function ys (see (7.9)). Then, there exists a unique
η ∈ (0, τ) such that h(ys(η)) = 0 and further h(ys(σ)) < 0, for all σ ∈ [0, η). With this value of η, we compute
x1(η) = x0 + η

s
i=1 bif1(yi(η)) and we need to distinguish between two subcases:

(2.c) if h(x1(η)) > 0, we are back to the situation treated in Case 1;
(2.d) if h(x1(η)) ≤ 0, then we either continue the integration with vector field f1 (if h(x1(η)) < 0), or stop since we have

found the sought point on Σ .

The analysis of the other possibilities proceed along similar lines.
Case 3. Suppose that:

(3.a) h(yi(σ)) ≤ 0 for 0 ≤ σ ≤ τ and i = 2, . . . , s − 2;
(3.b) h(ys−1(τ)) > 0.

Assume that (again a monotonicity condition for the stage function ys−1):
d
dσ

h(ys−1(σ)) = hT
x (ys−1(σ))y′

s−1(σ) > 0, ∀σ ∈ [0, τ].

Then, there exists a unique η̄ ∈ (0, τ) such that h(ys−1(η̄)) = 0. Similarly to before, we have to distinguish between two
subcases:

(3.c) if h(ys(η̄)) ≤ 0, then we can form x1(η̄); if h(x1(η̄)) > 0, we will assume that h(ys(σ)) ≤ 0 for σ ∈ (0, η̄) in order to
compute η̂ such that h(x1(η̂)) vanishes;

(3.d) if h(ys(η̄)) > 0, then we go back to case 2.

All other cases, until the situation where y2(τ) is above Σ , and y1(τ) (that is, x0) is below Σ may be treated in much the
same way. We stress that, as long as appropriate monotonicity assumptions hold for the stage value functions, any explicit
Runge–Kutta method can approach the discontinuity surface from one side. Next, we exemplify what properties are needed
of the vector field, in order to make sure that these monotonicity properties hold. We do this for the Explicit Euler scheme
and for the Explicit Midpoint Rule.
Explicit Euler method. Let us consider the explicit Eulermethod, ERK1. In the region R1, one step of ERK1with stepsize τ reads

x1 = x0 + τ f1(x0). (8.6)

If x1 is in R1 we continue to integrate, otherwise we are aboveΣ . Consider the function x1(σ) = x0+σ f1(x0), 0 ≤ σ ≤ τ .
Trivially, this is amonotone function. It is a simple observation that the functionh(x1(σ)) changes sign in [0, τ], and therefore
there must be a value η ∈ [0, τ]where this function has a zero. If we want to make sure that this is the only root of h(x1(σ))
for σ ∈ [0, τ], then we need that the straight line segment x1(σ) intersect Σ just once; this requires a control on the
curvature of Σ with respect to the stepsize and the attractivity rate δ of (7.9). This is the content of the next result.

Theorem 8.2. Let x0 ∈ R1 and close to Σ . Let τ > 0 be the stepsize of the method and let x1(σ) = x0 + σ f1(x0), 0 ≤ σ ≤ τ
(so that x1(τ) = x1). Let τ be sufficiently small, and assume that there exist two strictly positive constants δ and ρ such that

(S1) hT
x (x0)f1(x0) ≥ δ;

(S2) [f1(x0)]Thxx(x1(σ))f1(x0) ≥ −ρ , for all σ ∈ [0, τ];
(S3) δ − ρτ > 0.

Then, the function h(x1(σ)) is strictly increasing for σ ∈ [0, τ]. In particular:

(i) if h(x1) ≤ 0, then h(x1(σ)) ≤ 0 for all σ ∈ [0, τ];
(ii) if h(x1) > 0, then there exists a unique η ∈ (0, τ) such that h(x1(η)) = 0.

Author's personal copy

L. Dieci, L. Lopez / Journal of Computational and Applied Mathematics 236 (2012) 3967–3991 3989

Fig. 16. Different cases for the midpoint method.

Explicit midpoint method. Next, let us consider the explicit midpoint method, ERK2. In the region R1, one step of ERK2 with
stepsize τ reads

x1 = x0 + τ f1(y2), with y2 = x0 +
τ

2
f1(x0), (8.7)

and notice that y2 is one step of Euler method (8.6) with stepsize τ/2 (see Fig. 16).
Now, supposewe have x0 ∈ R1, close toΣ . If h(x0+

τ
2 f1(x0)) ≤ 0 and also h(x1) ≤ 0, we continue integrating this system.

Otherwise, we will have to distinguish between the following two cases:

(a) h(y2) ≤ 0 but h(x0 + τ f1(y2)) > 0,
(b) h(y2) > 0.

Case (a). Define y2(σ) = x0 +
σ
2 f1(x0), for σ ∈ [0, τ], and assume that y2(σ) ∈ R1, for all σ ∈ [0, τ]; this can be

guaranteed under conditions much like those of Theorem 8.2, namely: hT
x (x0)f1(x0) ≥ δ, [f1(x0)]Thxx(y2(σ))f1(x0) ≥ −ρ

and δ − ρτ/2 > 0. In this case, take the function H(σ) = h(x1(σ)), σ ∈ [0, τ], where x1(σ) = x0 + σ f1(y2(σ)). Observe
thatH(σ) is a smooth function, taking values of opposite sign at the endpoints of the interval [0, τ]. As a consequence, there
must be a (first) value, call it η, where H(η) = 0. If we want that this is the unique value in [0, τ] where H vanishes, we
can give sufficient conditions to guarantee that the function H(σ) is monotone for σ ∈ [0, τ]. The theorem below is such a
result.

Theorem 8.3. Consider case (a), and assume that h(y2(σ)) ≤ 0, for all σ ∈ [0, τ]. Further, assume that there are constants
δ2 > 0 and ρ2 > 0 and let τ > 0 be sufficiently small such that the following conditions hold:

(S1) hT
x (x1(σ))f1(y2(σ)) ≥ δ2, for all σ ∈ [0, τ];

(S2) hT
x (x1(σ))Df1(y2(σ))f1(x0) ≥ −ρ2, for all σ ∈ [0, τ];

(S3) δ2 −
τ
2ρ2 > 0.

Then, the function h(x1(σ)) is strictly increasing for σ ∈ [0, τ]. In particular, there exists a unique η ∈ (0, τ) such that
h(x1(η)) = 0.

Case (b). Now, the stage value y2 is already on the other side of Σ , and thus we cannot properly form x1. So, we first seek
a value η ∈ (0, τ) such that y2(η) ∈ Σ . Then, if x1(η) = x0 + ηf1(y2(η)) is above Σ , we are back to case (a) relatively to
the stepsize η, and therefore the fact that there will exist a (unique) value η ∈ [0, η] for which h(x1(η)) = 0 can rest on
Theorem 8.3. On the other hand, if x1(η) is below Σ , we continue integrating.

8.2. One-sided multistep methods

We conclude this review by pointing out that attempts have beenmade in [32,33,52] to develop also one-sided methods
based on multistep schemes.

Here the goal is to choose the (variable) stepsize τk = tk+1 − tk so to have a stable equilibrium point on the surface
h(x) = 0. In particular, consider the Adams–Bashforth schemes of orderm:

xk+1 = xk + τk

m−1
i=0

γ ∗

i ∇
ifk, (8.8)

so that

h(xk+1) = h


xk + τk

m−1
i=0

γ ∗

i ∇
ifk


.

Author's personal copy

3990 L. Dieci, L. Lopez / Journal of Computational and Applied Mathematics 236 (2012) 3967–3991

Now, provided that the event function is invertible, one may select

τk =
−xk + h−1(γ h(xk))

m−1
i=0

γ ∗

i ∇ ifk

,

yielding the difference equation hk+1 = γ hk which has solution hk = h0γ
k and converges exponentially to h = 0 provided

0 ≤ γ < 1.
Of course, this requires being able to compute the inverse h−1, which is often an unrealistic assumption. However, if

h(x) = bT x + a, then we have:

h(xk+1) = h(xk) + τkbT
m−1
i=0

γ ∗

i ∇
ifk,

which is essentially a Taylor expansion in τk about xk. Hence, one may select

τk =
(γ − 1)h(xk)

m−1
i=0

γ ∗

i [bT∇ ifk]
.

For more general event functions, see [32,33,52].

9. Conclusions

We gave a brief review of works on numerical integration of differential equations with discontinuous right-hand side.
The topic has received attention for many years chiefly in the control and electrical engineering communities. Our hope is
that this review will encourage other workers in numerical analysis to get closer to this challenging problem.

References

[1] G. Bartolini, F. Parodi, V.I.A. Utkin, T. Zolezzi, The simplex method for nonlinear sliding mode control, Mathematical Problems in Engineering 4 (1999)
461–487.

[2] E.K.P. Chong, S. Hui, S.H. Zak, An analysis of a class of neural networks for solving linear programming problems, IEEE Transactions on Automatic
Control 44 (1999) 1995–2006.

[3] M.P. Glazos, S. Hui, S.H. Zak, Sliding modes in solving convex programming problems, SIAM Journal on Control and Optimization 36 (1998) 680–697.
[4] J.L. Gouze, T. Sari, A class of piecewise linear differential equations arsing in biological models, Dynamical Systems 17 (2002) 299–319.
[5] K.H. Johansson, A.E. Barabanov, K.J. Astrom, Limit cycles with chattering in relay feedback systems, IEEE Transactions on Automatic Control 247 (2002)

1414–1423.
[6] K.H. Johansson, A. Rantzer, K.J. Astrom, Fast swiyches in relay feedback systems, Automatica 35 (1999) 539–552.
[7] J. Malmborg, B. Bernhardsson, Control and simulation of hybrid systems, Communications in Nonlinear Science and Numerical Simulation 30 (1997)

337–347.
[8] E. Plathe, S. Kjøglum, Analysis and genetic proporties of gene regulatory networks with graded response functions, Physica D 201 (2005) 150–176.
[9] V.I. Utkin, Sliding Modes and Their Application in Variable Structure Systems, MIR Publisher, Moskow, 1978.

[10] V.I. Utkin, Sliding Mode in Control and Optimization, Springer, Berlin, 1992.
[11] R. Casey, H. de Jong, J.L. Gouze, Piecewise-linearmodels of genetics regulatory networks: equilibria and their stability, Journal ofMathematical Biology

52 (2006) 27–56.
[12] H. de Jong, J.L. Gouze, C. Hernandez, M. Page, T. Sari, J. Geiselmann, Qualitative simulation of genetic regulatory networks using piecewise-linear

models, Bulletin of Mathematical Biology 66 (2004) 301–340.
[13] W.P.M.H. Heemels, J.M. Schumacher, S. Weiland, Linear complementarity systems, SIAM Journal on Applied Mathematics 60 (4) (2000) 1234–1269.
[14] M. di Bernardo, P. Kowalczyk, A. Nordmark, Bifurcations of dynamical systemswith sliding: derivation of normal-formmappings, Physica D 170 (2002)

175–205.
[15] Y.A. Kuznetsov, S. Rinaldi, A. Gragnani, One-parameter bifurcations in planar filippov systems, International Journal of Bifurcation and Chaos 13 (2003)

2157–2188.
[16] P. Kowalczyk, M. di Bernardo, Two-parameter degenerate sliding bifurcations in filippov systems, Physica D 204 (2005) 204–229.
[17] R.I. Leine, H. Nijmeijer, Dynamics and Bifurcations in Non-Smooth Mechanical Systems, in: Lecture Notes in Applied and Computational Mechanics,

vol. 18, Springer-Verlag, Berlin, 2004.
[18] R.I. Leine, D.H. van Campen, B.L. van de Vrande, Bifurcations in nonlinear discontinuous systems, Nonlinear Dynamics 23 (2000) 105–164.
[19] J.P. Aubin, A. Cellina, Differential Inclusions, Springer-Verlag, Berlin, 1984.
[20] A.F. Filippov, Differential Equations with Discontinuous Right–Hand Sides, in: Mathematics and Its Applications, Kluwer Academic, Dordrecht, 1988.
[21] V. Acary, B. Brogliato, Numerical Methods for Nonsmooth Dynamical Systems. Applications inMechanics and Electronics, in: Lecture Notes in Applied

and Computational Mechanics, Springer-Verlag, Berlin, 2008.
[22] M. di Bernardo, C.J. Budd, A.R. Champneys, P. Kowalczyk, Piecewise-smooth Dynamical Systems. Theory and Applications, in: Applied Mathematical

Sciences, vol. 163, Springer-Verlag, Berlin, 2008.
[23] J. Llibre, P.R. da Silva, M.A. Teixeira, Regularization of discontinuous vector fields via singular perturbation, Journal of Dynamics and Differential

Equations 19 (2009) 309–331.
[24] R.I. Leine, Bifurcations in discontinuous mechanical systems of filippov’s type, Ph.D. Thesis, Techn. Univ. Eindhoven, The Netherlands, 2000.
[25] C.W. Gear, O. Østerby, Solving ordinary differential equations with discontinuities, ACM Transactions on Mathematical Software 10 (1984) 23–24.
[26] A. Hindmarsh, GEAR: Ordinary differential solver, Tech. Rep. UCID-30001, Revision 3, Lawrence Livermore National Laboratories, Livermore California,

1974.
[27] D.E. Stewart, Rigid-body dynamics with friction and impact, SIAM Review 42 (2000) 3–39.
[28] R. Mannshardt, One-step methods of any order for ordinary differential equations with discontinuous right-hand sides, Numerische Mathematik 31

(1978) 131–152.

Author's personal copy

L. Dieci, L. Lopez / Journal of Computational and Applied Mathematics 236 (2012) 3967–3991 3991

[29] T. Holzhueter, Simulation of relay control systems using MATLAB/SIMULINK, Control Engineering Practice 6 (1998) 1089–1096.
[30] L.F. Shampine, S. Thompson, Event location for ordinary differential equations, Computer and Mathematics with Applications 39 (2000) 43–54.
[31] E. Hairer, S.P. Nørsett, G. Wanner, Solving Ordinary Differential Equations I: Nonstiff Problems, second revised ed., Springer-Verlag, Berlin, 1987.
[32] J.M. Esposito, V. Kuman, An asynchronous integration and event detection algorithm for simulating Multi-Agent hybrid systems, ACM Transactions

on Modeling and Computer Simulation 14 (4) (2004) 363–388.
[33] J.M. Esposito, V. Kuman, A state event detection algorithm for numerically simulating hybrid systems with model singularities, ACM Transactions on

Modeling and Computer Simulation 17 (1) (2007) 1–22.
[34] J.D. Lambert, Numerical Methods for Ordinary Differential Systems: The Initial Value Problem, John Wiley, London, 1991.
[35] M. Calvo, J.I. Montijano, L. Randez, On the solution of discontinuous IVPs by adaptive Runge–Kutta codes, Numerical Algorithms 33 (2003) 163–182.
[36] M. Calvo, J.I. Montijano, L. Randez, The numerical solution of discontinuous IVPs by Runge–Kutta codes: a review, Boletín de la Sociedad Espanõla

Mathemática Aplicada 44 (2008) 33–53.
[37] W.H. Enright, K.R. Jackson, S.P. Nørsett, P.G. Thomsen, Effective solution of discontinuous IVPs using Runge–Kutta formula pair with interpolants,

Applied Mathematics and Computation 27 (1988) 313–335.
[38] E. Eich-Soellner, C. Fuhrer, Numerical Methods in Multibody Dynamics, B.G. Teubner, Stuttgart, Germany, 1998.
[39] N. Guglielmi, E. Hairer, Computing breaking points in implicit delay differential equations, Advances in Computational Mathematics 29 (2008)

229–247.
[40] G. Grabner, R. Kittinger, A. Kecskemethy, An integration Runge–Kutta and polynomial root finding method for reliable event-driven multibody

simulation, in: Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control, IFAC, Seville 3–5, 2003.
[41] E. Hairer, C. Lubich, G. Wanner, Solving Ordinary Differential Equations II: Stiff Problems, second revised ed., Springer-Verlag, Berlin, 2010.
[42] A. Bellen, M. Zennaro, Numerical Methods for Delay Differential Equations, Clarendon Press, Oxford, 2003.
[43] M. Berardi, L. Lopez, On the continuous extension of Adams-Bashforth methods and the event location in discontinuous ODEs, Applied Mathematics

Letters 25 (6) (2012) 995–999.
[44] M.B. Carver, Efficient implementation over discontinuities in ordinary differential equation simulations, Mathematics and Computers in Simulation

20 (1978) 190–196.
[45] L. Fridman, Chattering in sliding mode systems and singular perturbation, in: Proc. Int. Symp. on Nonlinear Control Systems, 1995, pp. 725–730.
[46] A.B. Nordmark, P.T. Piiroinen, Simulation and stability analysis of impacting systems with complete chattering, Nonlinearity 58 (1) (2009) 85–106.
[47] P.T. Piiroinen, Y.A. Kuznetsov, An event-driven method to simulate Filippov systems with accurate computing of sliding motions, ACM Transactions

on Mathematical Software 34 (13) (2008) 1–24.
[48] L. Dieci, L. Lopez, Slidingmotion in Filippov differential systems: theoretical results and a computational approach, SIAM Journal onNumerical Analysis

47 (2009) 2023–2051.
[49] E. Hairer, C. Lubich, G. Wanner, Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, Springer-

Verlag, Berlin, 2006.
[50] U.M. Ascher, L.R. Petzold, Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations, SIAM, Society for Industrial

and Applied Mathematics (1998).
[51] L. Dieci, L. Lopez, Sliding motion on discontinuity surfaces of high co-dimension. A construction for selecting a Filippov vector field, Numerische

Mathematik 117 (2011) 779–811.
[52] J.M. Esposito, V. Kuman, G.J. Pappas, Accurate event detection for simulating hybrid systems, in: M.D. Di Benedetto, A. Sangiovanni-Vincitelli (Eds.),

HSCC 2001, in: LNCS, vol. 2034, Springer-Verlag, Berlin, Heidelberg, 2001, pp. 204–217.
[53] M. Najaf, A. Azil, R. Nikoukhah, Implementation of continuous-time dynamics in scicos, in: Vlatka Hlupic Alexander Verbraeck Ed., Proceedings 15th

European Simulation Symposium, SCS European Council / SCS Europe BVBA, 2003.
[54] L. Dieci, L. Lopez, Numerical solution of discontinuous differential systems: approaching the discontinuity from one side, Applied Numerical

Mathematics (2011).

