Section 3.2

One-to-one and onto transformations
Section 3.2 Outline

- Learn the definitions of one-to-one and onto functions
- Determine if a given matrix transformation is one-to-one and/or onto
One-to-one and onto in calculus

What do one-to-one and onto mean for a function $f : \mathbb{R} \to \mathbb{R}$?
One-to-one

A matrix transformation \(T : \mathbb{R}^n \rightarrow \mathbb{R}^m \) is one-to-one if each \(b \) in \(\mathbb{R}^m \) is the output for at most one \(v \) in \(\mathbb{R}^n \).

In other words: different inputs have different outputs.

Do not confuse this with the definition of a function, which says that for each input \(x \) in \(\mathbb{R}^n \) there is at most one output \(b \) in \(\mathbb{R}^m \).
One-to-one

\(T : \mathbb{R}^n \to \mathbb{R}^m \) is one-to-one if each \(b \) in \(\mathbb{R}^m \) is the output for at most one \(v \) in \(\mathbb{R}^n \).

Theorem. Suppose \(T : \mathbb{R}^n \to \mathbb{R}^m \) is a matrix transformation with matrix \(A \). Then the following are all equivalent:

- \(T \) is one-to-one
- the columns of \(A \) are linearly independent
- \(Ax = 0 \) has only the trivial solution
- \(A \) has a pivot in each column
- the range of \(T \) has dimension \(n \)

What can we say about the relative sizes of \(m \) and \(n \) if \(T \) is one-to-one?

Draw a picture of the range of a one-to-one matrix transformation \(\mathbb{R} \to \mathbb{R}^3 \).
A matrix transformation $T : \mathbb{R}^n \rightarrow \mathbb{R}^m$ is **onto** if the range of T equals the codomain \mathbb{R}^m, that is, each b in \mathbb{R}^m is the output for at least one input v in \mathbb{R}^m.
Onto

\[T : \mathbb{R}^n \rightarrow \mathbb{R}^m \] is onto if the range of \(T \) equals the codomain \(\mathbb{R}^m \), that is, each \(b \) in \(\mathbb{R}^m \) is the output for at least one input \(v \) in \(\mathbb{R}^n \).

Theorem. Suppose \(T : \mathbb{R}^n \rightarrow \mathbb{R}^m \) is a matrix transformation with matrix \(A \). Then the following are all equivalent:

- \(T \) is onto
- the columns of \(A \) span \(\mathbb{R}^m \)
- \(A \) has a pivot in each row
- \(Ax = b \) is consistent for all \(b \) in \(\mathbb{R}^m \)
- the range of \(T \) has dimension \(m \)

What can we say about the relative sizes of \(m \) and \(n \) if \(T \) is onto?

Give an example of an onto matrix transformation \(\mathbb{R}^3 \rightarrow \mathbb{R} \).
One-to-one and Onto

Do the following give matrix transformations that are one-to-one? onto?

\[
\begin{pmatrix}
1 & 0 & 7 \\
0 & 1 & 2 \\
0 & 0 & 9
\end{pmatrix}
\begin{pmatrix}
1 & 0 \\
1 & 1 \\
2 & 1
\end{pmatrix}
\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
2 & 1 & 1
\end{pmatrix}
\]
One-to-one and Onto

Which of the previously-studied matrix transformations of \mathbb{R}^2 are one-to-one? Onto?

\[
\begin{pmatrix}
0 & 1 \\
1 & 0
\end{pmatrix}
\text{ reflection}
\]

\[
\begin{pmatrix}
1 & 0 \\
0 & 0
\end{pmatrix}
\text{ projection}
\]

\[
\begin{pmatrix}
3 & 0 \\
0 & 3
\end{pmatrix}
\text{ scaling}
\]

\[
\begin{pmatrix}
1 & 1 \\
0 & 1
\end{pmatrix}
\text{ shear}
\]

\[
\begin{pmatrix}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{pmatrix}
\text{ rotation}
\]
Which are one to one / onto?

Poll

Which give one to one-to-one / onto matrix transformations?

\[
\begin{pmatrix}
1 & 1 & 0 \\
0 & 1 & 1
\end{pmatrix}
\begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix}
\begin{pmatrix}
1 & -1 & 2 \\
-2 & 2 & -4
\end{pmatrix}
\]
Consider the robot arm example from the book.

There is a natural function \(f \) here (not a matrix transformation). The input is a set of three angles and the co-domain is \(\mathbb{R}^2 \). Is this function one-to-one? Onto?
The geometry

Say that $T : \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation.

The geometry of one-to-one:

The range has dimension n (and the null space is a point).

The geometry of onto:

The range has dimension m, so it is all of \mathbb{R}^m (and the null space has dimension $n - m$).
Summary of Section 3.2

- \(T : \mathbb{R}^n \to \mathbb{R}^m \) is one-to-one if each \(b \) in \(\mathbb{R}^m \) is the output for at most one \(v \) in \(\mathbb{R}^n \).

- **Theorem.** Suppose \(T : \mathbb{R}^n \to \mathbb{R}^m \) is a matrix transformation with matrix \(A \). Then the following are all equivalent:
 - \(T \) is one-to-one
 - the columns of \(A \) are linearly independent
 - \(Ax = 0 \) has only the trivial solution
 - \(A \) has a pivot in each column
 - the range has dimension \(n \)

- \(T : \mathbb{R}^n \to \mathbb{R}^m \) is onto if the range of \(T \) equals the codomain \(\mathbb{R}^m \), that is, each \(b \) in \(\mathbb{R}^m \) is the output for at least one input \(v \) in \(\mathbb{R}^n \).

- **Theorem.** Suppose \(T : \mathbb{R}^n \to \mathbb{R}^m \) is a matrix transformation with matrix \(A \). Then the following are all equivalent:
 - \(T \) is onto
 - the columns of \(A \) span \(\mathbb{R}^m \)
 - \(A \) has a pivot in each row
 - \(Ax = b \) is consistent for all \(b \) in \(\mathbb{R}^m \).
 - the range of \(T \) has dimension \(m \).
Typical exam questions

- True/False. It is possible for the matrix transformation for a 5×6 matrix to be both one-to-one and onto.
- True/False. The matrix transformation $T : \mathbb{R}^3 \rightarrow \mathbb{R}^3$ given by projection to the yz-plane is onto.
- True/False. The matrix transformation $T : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ given by rotation by π is onto.
- Is there an onto matrix transformation $\mathbb{R}^2 \rightarrow \mathbb{R}^3$? If so, write one down, if not explain why not.
- Is there an one-to-one matrix transformation $\mathbb{R}^2 \rightarrow \mathbb{R}^3$? If so, write one down, if not explain why not.