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Abstract. Building on work of Farb and the second author, we prove that the group of
automorphisms of the fine curve graph for a surface is isomorphic to the group of homeo-
morphisms of the surface. This theorem is analogous to the seminal result of Ivanov that
the group of automorphisms of the (classical) curve graph is isomorphic to the extended
mapping class group of the corresponding surface.

1. Introduction

The fine curve graph C†(S) was recently introduced by Bowden–Hensel–Webb as a
combinatorial tool for studying Homeo(S), the group of homeomorphisms of a surface S. Its
vertices are essential simple closed curves in S and the edges are pairs of disjoint curves. There
are two versions of C†(S) in the literature, according to whether the curves are smooth or
topological (the two are quasi-isometric). In this paper we take the vertices to be topological
curves.

Let Sg be the closed, connected, orientable surface of genus g. Our main theorem is

that the group of simplicial automorphisms of C†(Sg) is isomorphic to Homeo(Sg) when g ≥ 2.

We can think of this as saying that C†(Sg) is a combinatorial model for Sg, in that they have
isomorphic groups of automorphisms. More precisely, we have the following statement.

Theorem 1.1. For g ≥ 2 the natural map

η : Homeo(Sg)→ Aut C†(Sg)
is an isomorphism.

Theorem 1.1 should be viewed as an analogue of the celebrated theorem of Ivanov [8,
Theorem 1] that the group of automorphisms of the curve graph for Sg is isomorphic to the
mapping class group of Sg when g ≥ 3. There are some immediate complications that arise for

the fine curve graph that distinguish it from the curve graph. To begin, the graph C†(S) has
uncountably many vertices, and is even locally uncountable. Moreover, two vertices of C†(S)
can bound (countably many) bigons and can intersect along (uncountably many) intervals,
etc. The main difficulty in our work is to overcome these topological pathologies.

There is a precursor to Theorem 1.1 that we use in our proof. Specifically, Farb and the
second author studied what we presently refer to as the extended fine curve graph EC†(S).
The vertices of EC†(S) are all simple closed curves in S, including the inessential ones, and
the edges again are pairs of disjoint curves.

Theorem 1.2 (Farb–Margalit). For any surface S without boundary, the natural map

ν : Homeo(S)→ Aut EC†(S)

is an isomorphism.

This material is based upon work supported by the National Science Foundation under Grant Nos. DMS-
181843 and DMS-1811941. The fourth author is partially supported by an NSERC–PDF Fellowship.
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We give the original (unpublished) proof of Theorem 1.2 in Section 4. In the unpub-
lished preprint of Farb and the second author [6], Theorem 1.2 is stated more generally, where
the vertices of the graph are locally flat (n − 1)-spheres in an n-manifold M and edges are
for disjointness (with the automorphism group being Homeo(M)). The proof is essentially
the same in this greater generality. We refer the reader to Farb’s lecture for more details [4].

Prior results on the fine curve graph. As mentioned, C†(S) was introduced by Bowden–
Hensel–Webb [2]. Using the smooth version of C†(Sg), they show that Diff0(Sg), the identity
component of the group of diffeomorphisms of Sg, admits many unbounded quasi-morphisms.
It follows that Diff0(Sg) is not uniformly perfect and its fragmentation norm is unbounded.

Bowden–Hensel–Mann–Militon–Webb [1] studied the dynamics of the Homeo(S)-action
on C†(S). They proved that some elements of Homeo(S) act parabolically and that asymp-
totic translation length is a continuous function on Homeo(S). They also characterized the
elements of Homeo(T 2) that act hyperbolically on C†(T 2) in terms of rotation sets.

Outline of the proof of Theorem 1.1. In order to prove Theorem 1.1, we construct an inverse
map Aut C†(Sg) → Homeo(Sg). Because Theorem 1.2 already gives a map Aut EC†(Sg) →
Homeo(Sg) we can construct our inverse as a composition

Aut C†(Sg)→ Aut EC†(Sg)→ Homeo(Sg).

So besides giving the proof of Theorem 1.2, our main task is to construct a homomorphism
Aut C†(Sg) → Aut EC†(Sg). In other words, given an automorphism α of C†(Sg) we would

like to define an extension α̂ which is an automorphism of EC†(Sg). This means that given α
and an inessential curve e in Sg, we need to associate another inessential curve e′ in a natural
way. We can then define α̂ by the rule α̂(e) = e′.

To this end, we associate to each such e a pair of vertices {c, d} of C†(Sg), called a
bigon pair, and define e′ to be the inessential curve associated to the bigon pair {α(c), α(d)}.
See the right-hand side of Figure 1 for an example of a bigon pair. This definition requires
us to prove that bigon pairs are preserved by automorphisms of C†(Sg), which is the content
of Proposition 2.1, the main technical result of the paper.

The proof of Theorem 1.2 mirrors the proof of Theorem 1.1: we use certain collections
of vertices—convergent sequences of curves—to encode points in a surface S in order to define
a map Aut EC†(S)→ Homeo(S). As such, convergent sequences play the role in the proof of
Theorem 1.2 that bigon pairs play in the proof of Theorem 1.1.

The torus case. As defined, the graph C†(T 2) is not connected since disjoint curves in T 2 lie
in the same homotopy class. In fact, the connected components precisely correspond to the
homotopy classes of essential curves. Since all of these components are isomorphic, it follows
that every permutation of the components is induced by some element of Aut C†(T 2). On the
other hand, Homeo(T 2) preserves the geometric intersection number between components,
so the set of permutations of components arising from Homeo(T 2) is countable (this set of
permutations is isomorphic to PGL2(Z)). Thus, Aut C†(T 2) properly contains Homeo(T 2) as
a subgroup of uncountable index.

Bowden–Hensel–Webb give a modified definition of C†(T 2), where the edges connect
curves that intersect at most once. It seems plausible that with this definition the natural
map Homeo(T 2)→ Aut C†(T 2) is an isomorphism. However, our arguments for Theorem 1.1
do not apply, since they rely heavily on the fact that edges correspond to disjointness. If one
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Figure 1. Left to right: a torus pair, a pants pair, and a bigon pair

can show that an element of Aut C†(T 2) preserves the set of edges corresponding to disjoint
curves, then it would be possible to apply many of our arguments to the torus case.

The smooth case. As mentioned at the outset, there is a smooth version of the fine curve
graph, where the vertices are smooth curves in a surface. We conjecture that for most
surfaces, the group of simplicial automorphisms of the smooth fine curve graph is the group
of diffeomorphisms of the surface. A first step in proving this conjecture would be to promote
Theorem 1.2 to the case of smooth curves and diffeomorphisms. Even given this, many of
the arguments we give for Theorem 1.1 would not apply because our constructions would in
general produce piecewise smooth curves (on the other hand, it also makes sense to consider
a graph whose vertices are piecewise smooth curves...).

Outline of the paper. We begin in Section 2 by showing that automorphisms of C†(Sg) preserve
certain configurations of curves in Sg. Specifically, these are the aforementioned bigon pairs,
which are used to define the map ε discussed above, and sharing pairs, which are used in the
proof that ε is well defined. In Section 3, we prove that three different fine arc graphs are

connected. The last of these, the fine linked arc graph A†Lk(S), is also used in the proof that
ε is well defined. In Section 4 we give the original proof of Theorem 1.2. Finally, in Section 5
we assemble the preceding results to prove Theorem 1.1.

Acknowledgments. We would like to thank Jonathan Bowden, Sebastian Hensel, Kathryn
Mann, Emmanuel Militon, and Richard Webb for a helpful conversation. We are particularly
grateful to Kathryn Mann for suggesting that we characterize bigons between vertices of the
fine curve graph. We would also like to thank Benson Farb for sharing his unpublished work,
and also for comments on an earlier draft. We are grateful to Sam Taylor for explaining
to us the proof of the connectivity of the fine curve graph. We would like to thank Andy
Putman and Roberta Shapiro for comments on an earlier draft. We also would like to
thank an anonymous referee for pointing out several small gaps in the proof and for making
many helpful suggestions. This work was completed as part of the REU program at Georgia
Institute of Technology; we would like to thank the National Science Foundation and the
School of Mathematics at Georgia Institute of Technology for their generous support.

2. Characterizations of curve configurations

The goal of this section is to prove that two specific types of configurations of curves
in a surface S are preserved under automorphisms of C†(S). The corresponding statements
are Propositions 2.1 and 2.2. We restrict ourselves in this section to the case g ≥ 2.

We begin with some preliminaries. We say that curves c and d are noncrossing at a
component a of c∩d if there is a neighborhood U of a and a homeomorphism U → R2 so that
the image of c∩U and d∩U lie in the (closed) upper and lower half-planes of R2, respectively.
The curves c and d are noncrossing if they are noncrossing at each component of c ∩ d.
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Figure 2. The three types of linked sharing pairs

Next, we say that a pair {c, d} of essential simple closed curves in S (equivalently, a
pair of vertices of C†(S)) is...

• a torus pair if c ∩ d is a single interval and c and d cross at that interval,
• a pants pair if c ∩ d is a single interval, c and d do not cross at that interval, and c

and d are not homotopic, and
• a bigon pair if c ∩ d is a nontrivial closed interval and c and d are homotopic.

If c and d form a torus pair, then there is a neighborhood of c ∪ d that is a torus with
boundary. If c and d form a pants pair, then there is a neighborhood of c ∪ d that is a pair
of pants. We say that a torus pair or pants pair {c, d} is degenerate if c ∩ d is a single point.
See Figure 1 for pictures of the three types of pairs; in each case, we show the union of the
two curves in the pair. Given a nondegenerate torus pair {c, d}, there are three ways to write
c ∪ d as a union of two simple closed curves, and each of the three resulting pairs of curves
is a torus pair. The same statement is true for pants pairs. As such, the first two pictures in
Figure 1 really show three torus pairs and three pants pairs, respectively.

If {c, d} is a nondegenerate torus pair (or pants pair) in S, then there is exactly one
other essential curve e contained in c ∪ d; the curve e is the closure in S of the symmetric
difference c4d. We also refer to {c, d, e} as a torus triple (or pants triple), since any two
elements of the triple form a torus pair determining the third.

If c and d form a bigon pair, then c and d determine an inessential simple closed curve
e; specifically, e is the closure of the symmetric difference c4d. When the two curves in
a bigon pair are nonseparating, we call the pair a nonseparating bigon pair. The following
proposition is the first of the two main goals of the section.

Proposition 2.1. Let g ≥ 2. Then every automorphism of C†(Sg) preserves the set of
nonseparating bigon pairs.

For the second proposition, we require another definition. Suppose that the bigon pairs
{a, b} and {a′, b′} determine the same inessential curve e. In this case, each bigon pair gives
rise to a single arc in the surface obtained by deleting the interior of the disk bounded by
e; we identify this surface with S1

g . We say that the pair of bigon pairs {{a, b}, {a′, b′}} is a

sharing pair if the corresponding arcs in S1
g have disjoint interiors. We further say that the

sharing pair is linked if these two arcs are linked at e, which means that all boundary parallel
curves in S1

g sufficiently close to the boundary intersect the two arcs alternately. We note that
if a sharing pair is linked, then all four of the corresponding curves must be nonseparating.
See Figure 2 for pictures of linked sharing pairs; there are three configurations according to
how many endpoints of the arcs agree at e. The following proposition is the second of the
two main goals of the section.

Proposition 2.2. Let g ≥ 2. Then every automorphism of C†(Sg) preserves the set of linked
sharing pairs.
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As discussed in the introduction, Propositions 2.1 and 2.2 will be used in Section 5
to define a map Aut C†(Sg) → Aut EC†(Sg). More specifically, given α ∈ Aut C†(Sg) we will

define an extension α̂ ∈ Aut EC†(Sg). If e is an inessential curve determined by the bigon pair
{c, d}, then Proposition 2.1 allows us to define α̂(e) to be the inessential curve determined
by {α(c), α(d)}, and Proposition 2.2 will be used in the proof that α̂(e) is well defined.

We begin in Section 2.1 by proving a preliminary result, Lemma 2.5, which states that
automorphisms preserve torus pairs. This lemma will be used in the proofs of Propositions 2.1
and 2.2, which we give in Sections 2.2 and 2.3, respectively.

Tame curves, wild pairs. Before we begin in earnest, we make some comments about the
point-set topological issues that arise in this work. First, it is a fact that every curve in a
surface is tame in the sense that it is flat at each point (see [3, Theorem A1]). It follows, for
example, that any two nonseparating curves in a surface S differ by a homeomorphism of S.
This can be thought of as a version of the change of coordinates principle in the theory of
mapping class groups [5, Section 1.3].

While curves themselves are tame, pairs of curves can exhibit complicated behavior. If
a and b are curves in a surface S, then a \ b can be regarded as an open set in S1, and hence
is a countable union of disjoint intervals. On the other hand, a ∩ b is a compact set, but it
can be complicated. The components of a ∩ b are (possibly degenerate) intervals, but there
can be uncountably many; for instance a ∩ b can be a Cantor set.

2.1. Torus pairs. In this section we prove Lemma 2.5, which states that automorphisms of
C†(Sg) preserve the set of torus pairs, the set of (non)degenerate torus pairs, and the set of
torus triples. Along the way, we prove two auxiliary lemmas, Lemmas 2.3 and 2.4.

Sides. For the first lemma, a multicurve is a finite collection of pairwise disjoint essential
simple closed curves in S (a curve is an example of a multicurve). As such, multicurves are
the same as finite cliques in C†(S). We emphasize that two curves in a multicurve are allowed
to be parallel.

A multicurve in S is separating if its complement has more than one component. We
say that two curves a and b lie on the same side of a separating multicurve m if they are
disjoint from m and lie in the same complementary component.

In the proof, we say that a graph is a join if we can partition the set of vertices into
two or more nonempty sets in such a way that every vertex from one set is connected by an
edge to every vertex in the other sets. Also, the link of a set A of vertices in a graph is the
subgraph spanned by the set of vertices that are not in A and are connected by an edge to
each vertex in A.

Lemma 2.3. Let S = Sg with g ≥ 2, and let α ∈ Aut C†(S). Then α preserves the set

of separating curves in C†(S) and also preserves the set of separating multicurves in C†(S).
Moreover, α preserves the sides of a separating multicurve, that is, a and b lie on the same
side of m if and only if α(a) and α(b) lie on the same side of α(m).

Proof. First of all, it follows from the definition of C†(S) that α preserves multicurves and also
preserves curves. Therefore, for the first statement it suffices to distinguish the separating
multicurves from the nonseparating ones.

We claim that a multicurve m = {c1, . . . , ck} is separating if and only if the link of
m is a join. Indeed if m is a separating multicurve then the sets for the join decomposition
are the curves that lie in the various complementary components of m (each of these sets is
nonempty because they contain curves parallel to the ci). For the other direction, we observe
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that if m is a nonseparating multicurve, and a and b lie in the link of m, then there is a curve
d that intersects both a and b. It follows from this that the link of m cannot be a join, as
desired.

It follows from the argument in the previous paragraph that the two sets used to define
the join decomposition for a separating multicurve are uniquely defined. From this the second
statement follows. �

Hulls. We define the hull of a collection of curves in a surface to be the union of the curves
along with any embedded disks bounded by the curves.

Lemma 2.4. Let S = Sg with g ≥ 2, and let α ∈ Aut C†(S). If X is a finite set of vertices

of C†(S) and a vertex d lies in the hull of X, then α(d) lies in the hull of α(X).

Proof. It suffices to prove that d lies in the hull of X if and only if the link of d contains the
link of X. To this end, suppose that d is a vertex of C†(S) that does not lie in the hull of X.
This means that there is a component of d \X that lies in a component R of S \X that is
not a disk. Because R is not a disk, it contains simple closed curves that are essential in S,
and in particular it contains one that intersects the arc of d in R, as desired.

Suppose on the other hand that d is a vertex of C†(S) that lies in the hull of X. Suppose
also that e is a simple closed curve in S that intersects d but not X. Since e is disjoint from
X it must lie in the complement of X. And since d is contained in the hull of X it must then
be that e lies in one of the components of S \X that is a disk. It follows that e is inessential,
and the lemma is proven. �

The statement of Lemma 2.4 is specifically geared towards closed surfaces. For surfaces
with punctures we would, among other things, need to define the hull to include all once-
punctured disks.

Torus pairs. We now prove the main result of this subsection.

Lemma 2.5. Let S = Sg with g ≥ 2, and let α ∈ Aut C†(S). Then α preserves the set of
torus pairs, the set of degenerate torus pairs, the set of nondegenerate torus pairs, and the
set of torus triples.

Proof. We proceed in four steps. First we show that α preserves the union of the torus pairs
and the pants pairs. Then we show that α preserves the set of torus pairs. Next, we show
that α preserves the set of degenerate torus pairs, hence it also preserves the nondegenerate
torus pairs. Finally, we prove that α preserves the set of torus triples.

Step 1. For the first step, it suffices to show that the following three statements are equivalent
for a pair of intersecting vertices {c, d} of C†(S):

(1) The pair {c, d} is a torus pair or a pants pair.
(2) There is at most one other vertex of C†(S) that lies in the hull of {c, d}.
(3) There is at most one other vertex of C†(S) whose link contains the link of {c, d}.

The second and third statements are equivalent by Lemma 2.4, so it suffices to prove the
equivalence of the first two statements.

The first statement implies the second because if {c, d} is a torus pair or pants pair,
then the hull of {c, d} is c∪ d, and in this case there are either no other simple curves or one
other simple curve in c ∪ d, depending on whether or not {c, d} is degenerate.

We prove that the second statement implies the first. Let {c, d} be a pair of vertices
that are intersecting curves and assume that there is at most one other vertex in the hull of
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{c, d}. We claim that no complementary region of c ∪ d is a disk. Indeed, suppose to the
contrary that one such region were a disk. Any curve that agrees with c away from this disk
and disagrees with c inside the disk lies in the hull of {c, d}. There are infinitely many such
curves, a contradiction.

If {c, d} is not a torus pair or a pants pair, then it must be that c ∩ d has more than
one connected component. Let a1 and a2 be two such components. Let c1, c2, d1, and d2
be the closures of the complementary components of a1 ∪ a2 in c and d. In c ∪ d there are
four distinct simple closed curves e1, . . . , e4 that contain c1 ∪ d1, c1 ∪ d2, c2 ∪ d1, and c2 ∪ d2,
respectively. These curves intersect each ai in the empty set, an endpoint, or all of ai. The
ei are all distinct from c and d. If some ei were inessential, then it would be the boundary
of a disk in S. It would follow that c ∪ d bounds a (possibly smaller) disk, contradicting the
claim in the previous paragraph.

Step 2. For the second step, we assume that {c, d} is a torus pair or pants pair. We will show
that, under this assumption, the pair {c, d} is a torus pair if and only if there is a separating
curve e disjoint from c and d and with the following property: all nonseparating simple closed
curves in Sg lying on the same side of e as {c, d} fail to be disjoint from c∪d. The proposition

then follows from the definition of C†(Sg) and Lemma 2.3.
We begin with the forward direction. Let {c, d} be a torus pair, let R be a neighborhood

of c ∪ d homeomorphic to a torus with one boundary component e. The surface obtained
by cutting R along c ∪ d is an annulus. Any nonseparating curve in Sg that lies in R is
not parallel to the boundary (otherwise it is parallel to e, hence separating), and hence this
nonseparating curve intersects either c or d, as desired.

For the reverse direction, we assume that {c, d} is a pants pair, and we let e be any
separating curve disjoint from c∪d. Let R be the subsurface of Sg that contains c∪d and has
boundary e. It must be that R has positive genus. There is a closed neighborhood of c ∪ d
that is a pair of pants P contained in R; we denote its interior by P ◦. Since P has genus 0,
there must exist a curve in R \ P ◦ that is nonseparating in R, hence in Sg. This completes
the proof of the second step.

Step 3. The following three statements are equivalent for a torus pair {c, d} of C†(S):

(1) The torus pair {c, d} is nondegenerate.
(2) There is exactly one other vertex of C†(S) in the hull of {c, d}.
(3) There is exactly one other vertex of C†(S) whose link contains the link of {c, d}.

The equivalence of the first two statements can be proved by inspection of the two possible
configurations for a torus pair (degenerate and nondegenerate). The last two statements are
equivalent by Lemma 2.4. This completes the third step.

Step 4. Suppose {c, d, e} is a torus triple. Then e is the unique vertex (other than c and
d) contained in the hull of {c, d}. By Lemma 2.4, e is the unique curve whose link contains
the link of {c, d}. Since torus pairs are preserved, it now follows that torus triples are
preserved. �

2.2. Bigon pairs. In this subsection we prove Proposition 2.1. We begin by defining annulus
sets and describing their basic properties. We prove in Lemma 2.6 that these properties are
preserved under automorphisms of C†(S). With that in hand, we proceed to the proof of
Proposition 2.1.

Annulus sets. Suppose that (a, b) is an ordered pair of vertices of C†(Sg) that are disjoint,
homotopic curves. Assuming g ≥ 2, there is a unique annulus A in Sg whose boundary is
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a ∪ b. Let C†(a, b) be the set of vertices of C†(Sg) given by curves contained in the interior

of A. We refer to C†(a, b) as an annulus set. We say that a pair of vertices of C†(Sg) is an

annulus pair if they lie in some C†(a, b). A nonseparating noncrossing annulus pair is an
annulus pair where both curves are nonseparating and the pair is noncrossing.

There is a natural partial ordering on the annulus set C†(a, b): we say that c � d if c
and d are noncrossing and each component of c \ d lies in the component of A \ d bounded
by a.

Lemma 2.6. Let S = Sg with g ≥ 2, let α be an automorphism of C†(Sg), let a and b be
disjoint, homotopic nonseparating curves.

(1) The curves α(a) and α(b) are disjoint, homotopic nonseparating curves.

(2) The image of C†(a, b) under α is C†(α(a), α(b)).

(3) If c, d ∈ C†(a, b) are noncrossing then α(c) and α(d) are noncrossing.

(4) If c � d in C†(a, b) then α(c) � α(d) in C†(α(a), α(b)).

Proof. We prove the four statements in turn. The first statement is a consequence of
Lemma 2.3 and the fact that two disjoint nonseparating curves a and b in Sg are homo-
topic if and only if the following conditions hold: a and b form a separating multicurve and
all separating curves disjoint from both a and b lie on the same side of the multicurve a ∪ b.

The second statement is an immediate consequence of the first statement and Lemma 2.3.
We proceed to the third statement. By the first statement, α(a) and α(b) are disjoint,

homotopic nonseparating curves. Any two such ordered pairs differ by a homeomorphism of
S, and hence by an automorphism of C†(Sg). Thus, we may assume without loss of generality
that α preserves a and b (that is, we may postcompose α with the automorphism from the
previous sentence to make this so). By the second statement, α preserves the annulus set
C†(a, b).

We claim that two curves c and d in C†(a, b) are noncrossing if and only if there is a
different curve e ∈ C†(a, b) with the property that every curve in C†(a, b) that intersects c
and d must also intersect e. Indeed, when c and d are noncrossing the curve e is any curve
that contains c ∩ d, is contained in the hull of {c, d}, and that passes through the interior
of at least one such bigon (the last condition ensures that e is not equal to c or d). For
the other direction of the claim, we assume that there is a curve e with the property that
every curve in C†(a, b) that intersects c and d must also intersect e. The curve e divides the
annulus into two smaller annuli A− and A+, with the former being bounded by a and e and
the latter being bounded by b and e. The defining property of e implies that c and d are each
contained in one of these smaller annuli. It follows that c and d are noncrossing, as desired.
This completes the proof of the third statement.

The fourth statement holds by the previous three statements and the fact that non-
crossing curves c, d ∈ C†(a, b) satisfy c � d if and only if there is a vertex of C†(Sg) that
intersects a and c but not b or d. This completes the proof of the lemma. �

Type 1 and type 2 curves. Suppose that {c, d} is a nonseparating noncrossing annulus pair,
and suppose that e is a curve so that {c, e} and {d, e} are degenerate torus pairs. If c∩ e and
d ∩ e are the same point, then we say that e is a type 1 curve for {c, d}. Otherwise we say
that e is a type 2 curve for {c, d}. The reason for the terminology is that type 1 and type 2
curves intersect c ∪ d in one point and two points, respectively.

Lemma 2.7. Let S = Sg with g ≥ 2, and let α ∈ Aut C†(S). Then α preserves type 1
and type 2 curves for nonseparating noncrossing annulus pairs. More precisely, if {c, d} is a
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nonseparating noncrossing annulus pair and e is a type 1 curve for {c, d}, then α(e) is a type
1 curve for the nonseparating noncrossing annulus pair {α(c), α(d)}, and similarly for type
2 curves.

Proof. Since α preserves degenerate torus pairs (Lemma 2.5), we may assume that α preserves
the union of the type 1 and type 2 curves for {c, d}. So it remains to show that α preserves
the two types.

Say that c, d ∈ C†(a, b). By parts (1) and (2) of Lemma 2.6, we may assume without
loss of generality that α preserves C†(a, b) (as in the proof of Lemma 2.6 we may postcompose
α with an automorphism induced by an element of Homeo(S) to make this so).

Let e be a curve with the property that {c, e} and {d, e} are degenerate torus pairs, so
e is either a type 1 or type 2 curve for {c, d}. We claim that e is a type 2 curve if and only
if there is a curve f with the following properties:

• f is contained in the the hull of {c, d, e},
• f is not contained in C†(a, b), and

• f is not equal to e.

The forward direction is proved by construction, as follows. If e is a type 2 curve, it passes
through the interior of a bigon B bounded by arcs of c and d. By replacing the arc of e that
passes through the bigon with a different arc, we obtain the desired curve f . For the other
direction, we suppose that e is a type 1 curve for {c, d}. Any curve that satisfies the first
two given properties would have to contain all of e, hence would fail the third property. The
claim follows and the lemma thus follows from Lemma 2.4. �

Bigon pairs. We are now ready for the proof of Proposition 2.1.

Proof of Proposition 2.1. By Lemma 2.6(3), we have that α preserves nonseparating non-
crossing annulus pairs. If {c, d} is such a pair, then c ∪ d is a union of (potentially infinitely
many) inessential curves with (possibly degenerate) arcs connecting these inessential curves
cyclically. If there are k (or more) inessential curves, then we may find curves e1, f1, . . . , ek, fk
with the following properties:

• any two of the 2k curves are homotopic and pairwise disjoint,
• each ei is a type 1 curve for {c, d},
• each fi is a type 2 curve for {c, d},
• and the 2k curves lie in the given order in the annulus bounded by e1 and fk.

Conversely, if we can find 2k curves with the above properties, then c and d form at least
k inessential curves. Thus, by Lemmas 2.6 and 2.7, α preserves the number of inessential
curves formed by {c, d} (this number may be infinite). In particular, it preserves the set of
noncrossing annulus pairs that form exactly one inessential curve.

A bigon pair is a nonseparating noncrossing annulus pair {c, d} that forms exactly
one inessential curve and has the additional property that c ∩ d is a nondegenerate interval.
Among the nonseparating noncrossing annulus pairs forming exactly one inessential curve,
the bigon pairs are exactly those for which there exists two curves e1 and e2 that are disjoint
and are both type 1 curves for {c, d}. The proposition follows. �

2.3. Sharing pairs. The goal of this subsection is to prove Proposition 2.2, which states
that automorphisms of C†(Sg) preserve sharing pairs.

In the following proof we write A
.
= B if A and B are two sets with A4B a finite set.

The relation
.
= is an equivalence relation.
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Figure 3. Left to right: a sharing pair {{c, d}, {c′, d′}}, the torus pair {c′, d},
the torus pair {c, d′}, and the unique curve e that forms a torus triple with
both {c′, d} and {c, d′}

If {c, d, e} is a torus triple, then we have, for example, that e
.
= c4d. Similarly, if {c, d}

is a bigon pair, then the inessential curve e determined by {c, d} satisfies e
.
= c4d. In what

follows we will use the fact that if e and e′ are curves in a surface with e
.
= e′ then e = e′.

Proof of Proposition 2.2. We claim that bigon pairs {c, d} and {c′, d′} form a sharing pair if
and only if the following conditions hold:

(1) each of {c, d′} and {c′, d} is an nondegenerate torus pair, and
(2) there is a curve that forms a torus triple with both {c, d′} and {c′, d}.

The proposition follows from the claim, Proposition 2.1, and Lemma 2.5. The first direction
of the claim can be verified by explicitly constructing the curve e; in Figure 3 we indicate the
curve e that forms a torus triple with both {c, d′} and {c′, d}.

For the other direction, say that e is the inessential curve determined by {c, d}, and
that e′ is the inessential curve determined by {c′, d′}. Since there is a curve that forms a
torus triple with both {c, d′} and {c′, d}, this means that c4d′ .= c′4d. Using the basic fact
about symmetric differences that A4B = (A4C)4(B4C), we have:

e
.
= c4d =

(
c4c′

)
4

(
c′4d

) .
=

(
c4c′

)
4

(
c4d′

)
= c′4d′ .= e′.

Thus e = e′, which is to say that {c, d} and {c′, d′} determine the same inessential curve e. We
identify the complement of the interior of e with S1

g . The pairs {c, d} and {c′, d′} determine

arcs a and a′ in S1
g . If a and a′ were not disjoint and linked, then this would violate the

condition that {c, d′} (and also {c′, d}) is a nondegenerate torus pair. This completes the
proof. �

3. Connectedness of fine arc graphs

Let Sbg denote the surface obtained from Sg by deleting the interiors of b disjoint disks.

Let S = Sbg with b > 0. The goal of this section is to prove that three fine arcs graphs are

connected: the fine arc graph A†(S), the fine nonseparating arc graph NA†(S), and the fine

linked arc graph A†Lk(S). We begin by proving that A†(S) is connected (Proposition 3.1), and
then derive the connectivity of the other two graphs as corollaries (Corollaries 3.2 and 3.3).

For the proof of Theorem 1.1, we will only use the connectivity of A†Lk(S).

The fine arc graph. We begin with the basic definitions. An arc in S = Sbg is the image of a
map a : [0, 1]→ S. We say that the arc is simple if the map a is injective, we say that the arc
is proper if a−1(∂S) = {0, 1}, and we say that the arc is essential if it is not homotopic into
∂S. We say that two arcs have disjoint interiors if they are disjoint away from ∂S. When
two arcs have no intersections at all (including at the boundary), we say that the arcs are
completely disjoint.
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The fine arc graph A†(S) is the graph whose vertices are essential simple proper arcs
in S and whose edges connect vertices with disjoint interiors. The next proposition states
that A†(S) is connected; we note that for S = S1

0 , the graph A†(S) is empty, hence vacuously
connected.

Proposition 3.1. For any S = Sbg with b > 0, the graph A†(S) is connected.

Our proof of Proposition 3.1 is based on the proof of Bowden–Hensel–Webb that the
fine (smooth) curve graph is connected [2, Section 3]. As that proof relies on the connectivity
of the classical curve graph, our proof relies in the connectivity of the classical arc graph
A(S). The vertices of A(S) are isotopy classes of essential simple proper arcs in S, where
isotopies are allowed to move endpoints of arcs along the boundary of S. The edges are pairs
of vertices with disjoint representatives. The arc complex is the flag complex associated to
A(S).

Proof of Proposition 3.1. There is a natural simplicial map A†(S) → A(S) given by taking
isotopy classes. The arc complex is contractible [7], so in particular its 1-skeleton A(S) is
connected. Thus, it suffices to show that for any vertex of A(S), the subgraph of A†(S)
spanned by its preimage is connected. In other words, it suffices to show that between any
two isotopic essential simple proper arcs in S there is a path in A†(S) connecting the two.

Let a and b be vertices of A(S) that are isotopic arcs and let H : S1× [0, 1]→ S be an
isotopy from a to b. For t ∈ [0, 1], let at be the image of S1 × {t}, so a0 = a and a1 = b. For
each vertex c of A†(S), we define

Ic = {t ∈ [0, 1] | at is completely disjoint from c}

Each Ic is open. Thus we may find a sequence of open intervals I0, . . . , Ik that cover [0, 1]
and so each Ii is some Ici . We may further assume that 0 ∈ I0 and that Ii ∩ Ij is nonempty
if and only if |i− j| = 1. Let t0 = 0, let tk+1 = 1, and for i ∈ {1, . . . , k} let ti be an element
of Ii ∩ Ii+1. For i ∈ {0, . . . , k + 1} let ai = ati .

By definition, each pair {ai, ai+1} is completely disjoint from ci. Thus the sequence

a = a0, c0, a1, c1, a2, . . . , ak−1, ck−1, ak = b

is the desired path from a to b in A†(S). �

We remark that it is possible to define A†(S) in a similar manner when S has punctures
instead of boundary. However, in some cases, this graph is not connected. For instance, if
S = Sg,1 and an arc a spirals around the puncture infinitely many times relative to b, then a

and b are not connected by a path in A†(S). The part of the proof of Proposition 3.1 that
fails for surfaces with punctures is that the sets Ic are not always open.

The fine nonseparating arc graph. We say that an arc in a surface S is nonseparating if its
complement in S is connected. The fine nonseparating arc graph is the subgraph of A†(S)
spanned by the nonseparating arcs. The proof of the following corollary is modeled on the
proof of the corresponding statement for curve graphs [5, Theorem 4.4].

Corollary 3.2. For any S = Sbg with b > 0, the graph NA†(S) is connected.

Proof. Let a and b be vertices of NA†(S). By Proposition 3.1 there is a path

a = a0, . . . , ak = b
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Figure 4. Two types of linked pairs of arcs in S1
2

in A†(S) between a and b. We will show that we can replace this path with one that lies
entirely in NA†(S), by either removing the vertices that are separating arcs or replacing them
with vertices that are nonseparating arcs.

To this end we have the following claim: if x is a separating arc in S and R ⊆ S is one
side of x (meaning the closure of one of the two complementary components), then there is
a nonseparating arc y in S that is contained in R. Since x is separating it must be that the
endpoints of x lie on the same component of ∂S, say d. If R is a planar surface then since x
is essential R must contain some other component of ∂S, say d′. As such we may take y to
be any arc in R connecting d to d′. If R has positive genus, then we may take y to be any
nonseparating arc in R connecting d to itself.

We may now complete the proof of the lemma. Suppose that the given path from a
to b has a separating arc ai. If ai−1 and ai+1 have disjoint interiors, we may remove ai from
the path. Otherwise, it must be that ai−1 and ai+1 lie on the same side of ai. By the claim
there is a nonseparating arc a′i that is contained on the other side of ai. This a′i must be
connected by edges to both ai−1 and ai+1. Thus we may replace ai with a′i in the given path.
The lemma follows. �

The fine linked arc graph. Let S = Sbg be a surface with g ≥ 1 and b > 0. Let d0 be a

distinguished component of ∂S. Let a and b be two vertices of A†(S) that are arcs with
disjoint interiors. We say that a and b are linked at d0 if all four endpoints lie on d0 and the
boundary curve for any sufficiently small neighborhood of d0 alternates between intersections
with a and b. Some examples of linked arcs in S1

g with disjoint interiors are shown in Figure 4.

We define A†Lk(S, d0) to be the graph whose vertices are nonseparating simple proper
arcs in S with both endpoints at d0 and whose edges connect arcs with disjoint interiors that
are linked at d0. When convenient we suppress d0 in the notation in what follows and write

A†Lk(S).

Corollary 3.3. Let S = Sbg with g ≥ 1 and b > 0, and let d0 be a component of ∂S. The

graph A†Lk(S, d0) is connected.

Proof. Let a and b be vertices of A†Lk(S, d0). By Corollary 3.2 there is a path

a = a0, . . . , ak = b

in NA†(S).
For a given edge {ai, ai+1} in this path where ai and ai+1 are not linked, we would

like to show there is an arc bi that is linked with both ai and ai+1 and disjoint from their

interiors. For then we may obtain a path from a to b in A†Lk(S) by inserting all such bi into
the above sequence of vertices.

So let {x, y} be an arbitrary edge in NA†(S) where x and y are unlinked. Since each of
x and y is nonseparating, it follows that x∪ y separates S into at most two components. We
consider a small annular neighborhood A of d0. The intersections of x and y with A divide
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it into 4 components. These components come in a cyclic order; call them A0, A1, A2, and
A3. Exactly two of the 4 components of A have the property that they are bounded by one
arc of x and one arc of y. These components are not adjacent; say they are A0 and A2. Since
x ∪ y separates S into at most two components, A1 and A3 lie in the same component of S
cut along x ∪ y. Thus there is an arc z in S that is disjoint from x and y away from d0 and
connects A1 to A3. This arc z is thus linked with both x and y by definition. By virtue of

being linked with other arcs, z is nonseparating, hence a vertex of A†Lk(S, d0). The corollary
follows. �

4. Automorphisms of the extended fine curve graph

In this section we prove Theorem 1.2, which states that the natural map ν : Homeo(S)→
EC†(S) is an isomorphism. As discussed in the introduction, the proof we give is the original
one, due to Farb and the second author. We emphasize that the proof applies to all surfaces
without boundary, including those whose fundamental group is not finitely generated.

In Section 4.1 we introduce convergent sequences of vertices and prove several related
lemmas about them. Then in Section 4.2 we use convergent sequences to prove Theorem 1.2.

4.1. Convergent sequences. Let S be a surface without boundary. We say that a sequence
of vertices (ci) of EC†(S) converges to a point x ∈ S if the corresponding curves converge to
x in the Hausdorff metric. In other words, every neighborhood of x contains all but finitely
many of the ci. In this case we write lim(ci) = x. If (ci) is convergent, it must be that there
exists M > 0 so that each ci with i > M is inessential.

The main goal of this section is to prove Lemma 4.2, which states that automorphisms
of EC†(S) preserve convergent sequences. We also prove several related statements, Corollar-
ies 4.3, 4.4, and 4.5. Before proving these we introduce a technical tool, the connect-the-dots
lemma, Lemma 4.1.

Connect-the-dots lemma. We will use the following technical lemma to prove that automor-
phisms of EC†(S) preserve convergent sequences.

Lemma 4.1. Let S be a surface, and let (xi) be a sequence of points in S that converges to a
point x in the interior of S. Then there is a simple closed curve in S that contains infinitely
many of the xi.

Proof. Let U be an open disk in S that contains x. By the classification of surfaces of infinite
type [9, Theorem 1], the surface U \ ({xi} ∪ {x}) is homeomorphic to F = C \ ({1/n} ∪ {0})
(this surface is sometimes called the flute surface). Regarding the punctures in F as marked
points, there is clearly a simple closed curve containing infinitely many marked points of F
(any curve containing a nontrivial interval [0, ε]). Any such curve corresponds to a curve in
U containing infinitely many xi. �

Convergent sequences are preserved. For the statement of Lemma 4.2, we require one more
definition. We say that a vertex a of EC†(S) intersects the tail of a sequence of vertices (ci)
if there are infinitely many i so that the curve a intersects the curve ci.

Lemma 4.2. Let S be a surface without boundary. Automorphisms of EC†(S) preserve
convergent sequences.

Proof. It suffices to prove the following statement. Suppose that (ci) is a sequence of vertices
of EC†(S). Then (ci) is convergent if and only if the following two conditions hold:
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(1) there exists a vertex a that intersects the tail of (ci), and
(2) if a and b are distinct vertices that intersect the tail of (ci), then a and b intersect.

The forward direction follows immediately from the definition of a convergent sequence
and the fact that vertices of EC†(S) correspond to closed subsets of S. Indeed, if (ci) converges
to the point x then any two vertices that intersect the tail of (ci) must be curves that intersect
at the point x.

For the reverse direction, suppose that (ci) is not convergent. In the case where the
sequence (ci) leaves every compact subsurface of S, the first condition fails: there is no vertex
a intersecting the tail of (ci). Thus, we may assume that there is a compact subsurface R ⊆ S
with the property that ci ∩R is nonempty for infinitely many i.

Since R is compact, we may choose a subsequence (cij ) of (ci) and a sequence of
points xij ∈ cij with the property that xij converges to a point x in R. And since (ci) is
not convergent, we may choose another subsequence (cik) of (ci) and a sequence of points
yik ∈ cik with the property that yik converges to a point y in R. By replacing R with a
neighborhood of R, we may assume that x and y both lie in the interior of R.

Let U and V be disjoint open neighborhoods of x and y. These neighborhoods contain
infinitely many xij and infinitely many yik , respectively. By Lemma 4.1 there are simple
closed curves in U and V containing infinitely many of the xij and yik , respectively. The
curves a and b are disjoint since U and V are. Both curves intersect the tail of (ci) by
construction. This completes the proof. �

Coincidence of convergent sequences is preserved. For the statement of the following corollary,
we say that two convergent sequence of vertices of EC†(S) are coincident if they converge to
the same point of S. We also define the interleave of two sequences (ci) and (di) to be the
sequence c1, d1, c2, d2, . . . .

We have the following corollary of Lemma 4.2. The first statement follows from the defi-
nition of convergence in point set topology, and the second statement follows from Lemma 4.2.

Corollary 4.3. Let S be a surface without boundary. Let (ci) and (di) be two convergent
sequences of vertices of EC†(S). Then (ci) and (di) are coincident if and only if the interleave
of (ci) and (di) is convergent. In particular, automorphisms of EC†(S) preserve coincidence
of convergent sequences.

Convergence of convergent sequences is preserved. For the next corollary to Lemma 4.2, we
say that a sequence of convergent sequences

(c1i ), (c
2
i ), (c

3
i ), . . .

in EC†(S) converges if the sequence of limit points

lim(c1i ), lim(c2i ), lim(c3i ), . . .

converges to a point x ∈ S. In this case we say that the sequence converges to x.
A diagonal sequence for a sequence of sequences as above is a sequence (dj) with each

dj equal to some cji . In other words, there is a function D : N → N so that dj = cjD(j). We

impose a partial order on diagonal sequences for convergent sequences as follows: (dj) � (ej)
if the corresponding functions satisfy D(j) ≤ E(j) for all j. In the statement of the next
corollary, we say that a diagonal subsequence is sufficiently large if it is sufficiently large with
respect to this ordering.
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Let (c1i ), (c
2
i ), (c

3
i ), . . . be a sequence of convergent sequences of vertices of EC†(S) and

let x ∈ S. Then this sequence converges to x ∈ S if and only if all sufficiently large diagonal
subsequences converge to x. We thus have the following consequence of Lemma 4.2.

Corollary 4.4. Let S be a surface without boundary. Automorphisms of EC†(S) preserve
convergent sequences of convergent sequences of vertices of EC†(S).

Convergence of a sequence to a curve is preserved. For the next corollary, we say that a
vertex c is a limit curve for a sequence of vertices (ci) of EC†(S) if

lim(ci) ∈ c

(here we regard the ci as subsets of S as opposed to vertices of EC†(S)). We have that c is a
limit curve for (ci) if and only if the following condition holds: if a is any vertex of EC†(S)
that intersects the tail of (ci) then a intersects c. In particular we have the following corollary
of Lemma 4.2, which follows by an argument similar to the one used for Lemma 4.2.

Corollary 4.5. Let S be a surface without boundary. Automorphisms of EC†(S) respect the
relationship between convergent sequences and limit curves. More precisely, c is a limit curve
for a sequence of vertices (ci) and α is an element of Aut EC†(S), then α(c) is a limit curve
for (α(ci)).

4.2. Finishing the proof. We require one more lemma for the proof of Theorem 1.2.

Lemma 4.6. For any surface S without boundary, the natural map

ν : Homeo(S)→ Aut EC†(S)

is injective.

Proof. Suppose that f ∈ Homeo(S) lies in ker ν, and let x ∈ S. Let c and d be two vertices
of EC†(S) with c∩ d = {x} (regarding c and d as subsets of S). Since f(c) = c and f(d) = d,
it follows that f(x) = f(c ∩ d) = c ∩ d = x. Since x was arbitrary, f is the identity, as
desired. �

Proof of Theorem 1.2. As in the statement of the theorem, let ν : Homeo(S) → Aut EC†(S)
be the natural map. As per the statement, we would like to show that ν is an isomorphism.
By Lemma 4.6, the map ν is injective.

We wish to construct a left inverse ξ : Aut EC†(S)→ Homeo(S) for ν, as this will imply
that ν is surjective. For α an arbitrary element of Aut EC†(S) let fα : S → S be the map
given by the following rule: for x ∈ S we choose a convergent sequence (ci) of vertices of
EC†(S) with lim(ci) = x and define

fα(x) = lim(α(ci)).

The right hand side is well defined because α preserves convergent sequences (Lemma 4.2).
The function fα is well defined and bijective by Corollary 4.3.

Our next goal is to show that each such fα is a homeomorphism of S. Since f−1α = fα−1 ,
it suffices to show that fα is continuous. And since surfaces are first countable, the continuity
of fα can be verified by showing that it preserves limits points of convergent sequences. But
this is precisely the content of Corollary 4.4.

Now that we have shown that ξ : Aut EC†(S)→ Homeo(S) is a well-defined homomor-
phism, it remains to show that ξ ◦ ν is the identity. To this end we require the following.
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Claim 1. If α is an element of Aut EC†(S) and c is a vertex of EC†(S), then

ξ(α)(c) = α(c).

Claim 2. If f is an element of Homeo(S) and c is a vertex of EC†(S), then

ν(f)(c) = f(c).

The first claim follows from Corollary 4.5, and the second follows from the definition of the
natural map ν.

We may now prove that ξ ◦ν is the identity. Since ν is injective, it suffices to show that
ν ◦ ξ ◦ ν(f) = ν(f) for each f ∈ Homeo(S). This is to say that ξ ◦ ν(f) and f have the same
action on the set of vertices of EC†(S). Let c be an arbitrary vertex of EC†(S). Applying the
two claims in the previous paragraph in succession we have

ξ ◦ ν(f)(c) = ν(f)(c) = f(c).

This completes the proof of the theorem. �

5. Automorphisms of the fine curve graph

For the proof of Theorem 1.1, we require one additional lemma. The proof is the same
as the proof of Lemma 4.6

Lemma 5.1. For g ≥ 2, the natural map η : Homeo(Sg)→ Aut C†(Sg) is injective.

The proof of Theorem 1.1 also requires a definition. For a graph Γ and a subgraph ∆,
we say that a map Aut ∆→ Aut Γ is an extension map if each element of the image preserves
∆ and further that each element of Aut ∆ is equal to the restriction of its image.

Proof of Theorem 1.1. The proof has two steps. The first step is to show that there exists
an extension homomorphism ε : Aut C†(Sg) → Aut EC†(Sg). The second step is to use ε to
complete the proof of the theorem.

Step 1. Let α ∈ Aut C†(Sg). We would like to define an element α̂ ∈ Aut EC†(Sg). We will
then define ε(α) to be α̂. For any essential simple closed curve c in Sg we define α̂(c) to
be α(c). For an inessential curve e in Sg, we take any bigon pair {c, d} determining e and
define α̂(e) to be the inessential curve determined by {α(c), α(d)}; this makes sense because
of Proposition 2.1.

We would like to show that α̂ is a well defined bijection of the set of vertices of EC†(Sg).
Suppose that {c′, d′} is another bigon pair that determines e. It follows from Corollary 3.3
that there is a sequence of bigon pairs

{c, d} = {c0, d0} = · · · = {cn, dn} = {c′, d′}
where each pair {{ci, di}, {ci+1, di+1}} is a linked sharing pair for e. It follows then from
Proposition 2.2 that {α(c′), α(d′)} also determines the curve e, and so α̂ is well defined.

To complete the first step, we must show that α̂ is indeed an automorphism of C†(Sg),
that is, it takes edges to edges. For an edge spanned by two essential curves, this is automatic
from the definition. For an edge spanned by one essential curve c and one inessential curve
e, this follows from the fact that we can find a bigon pair that determines e and is disjoint
from c. It remains to deal with the case of two inessential curves.

We claim that two inessential curves e and f are disjoint if and only if the following
holds, up to relabeling e and f : for every bigon pair {c, d} that determines e, there is a bigon
pair {c′, d′} that determines f and is disjoint from c. The forward direction of the claim is
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Figure 5. Bigon pairs for disjoint inessential curves in the nested case (left)
and the unnested case (right)

proved by direct construction; see Figure 5. In the case where e and f are nested, we must
take e to be the outer curve. For the reverse direction, we assume that e and f intersect,
and that x ∈ e ∩ f . We may choose a bigon pair {c, d} for e where x is one of the vertices of
the bigon. If {c′, d′} is any bigon pair for f , then c′ ∪ d′ contains f , hence x. In particular,
c′ ∪ d′ intersects c, which completes the proof of the claim. It follows from the claim that α̂
preserves edges between inessential curves, and so α̂ is indeed an automorphism of C†(Sg).

By definition the map ε : Aut C†(Sg) → Aut EC†(Sg) given by ε(α) = α̂ is the desired
extension map.

Step 2. Recall that η : Homeo(Sg) → Aut C†(Sg) and ν : Homeo(Sg) → Aut EC†(Sg) are
the natural homomorphisms. By Theorem 1.2, the map ν is an isomorphism. Let ε be the
extension homomorphism guaranteed by the first step. We consider the composition:

Homeo(Sg)
η→ Aut C†(Sg)

ε→ Aut EC†(Sg)
ν−1

→ Homeo(Sg).

We claim that this composition is the identity. Indeed, since ν is the natural map, and since
ε is an extension homomorphism, it follows that for any f we have

η ◦ ν−1 ◦ ε ◦ η(f) = η(f).

Since η is injective (Lemma 5.1) it follows that

ν−1 ◦ ε ◦ η(f) = f,

which is to say that ν−1 ◦ ε is a left inverse to η. The theorem follows. �
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