On Congruence Subgroups of the Braid Group
Jessica Appel¹, Katie Gravel², Annie Holden³

¹University of Kentucky ²Massachusetts Institute of Technology ³Colby College

Goal: Understand the structure of congruence subgroups of the braid group.

![Braids](image)

<table>
<thead>
<tr>
<th>Integral Burau Representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>ρ⁻¹ : Bₙ → GL(n, ℤ)</td>
</tr>
<tr>
<td>σᵢ ↦ Iᵢ⁻¹ ⊕ [\begin{array}{cc} 2 & -1 \ -1 & 0 \end{array}] ⊕ Iₙ⁻ᵢ⁻¹</td>
</tr>
<tr>
<td>rₙ is the usual mod N reduction map</td>
</tr>
<tr>
<td>Bₙ[N] = ker(rₙ ∘ ρ⁻¹)</td>
</tr>
</tbody>
</table>

Problem I: Generating Sets

Question: What is a natural generating set for Bₙ[4]? How big is it?

Margalit and Kordek: Size lower bounded by

\[
\left(\binom{n}{2} + 3\binom{n}{3} + 3\binom{n}{4} \right) \sim O(n^4)
\]

Schreier’s method \(\sim\) exponential generating set
Use recurrence relation to reduce generating set

Theorem.

generators of \(Bₙ[4]\) \(\sim\) \(O(n^5)\)

Problem II: \(PBₙ^{\ell}\) and \(Bₙ[2\ell]\)

Question: What is the relationship between \(PBₙ^{\ell}\) and \(Bₙ[2\ell]\) for varying \(\ell\)?

Brendle and Margalit: \(PBₙ^{\ell} = Bₙ[4]\)

Theorem.

For \(\ell = 2^k\), \(PBₙ^{\ell} \subseteq Bₙ[2\ell]\)

For \(\ell = 6, 10, 12\) or \(\ell\) odd, \(PBₙ^{\ell} \not\subseteq Bₙ[2\ell]\)

Conjecture.

\(\ell = 2^k \iff PBₙ^{\ell} \subseteq Bₙ[2\ell]\)

Problem III: Quotients

Question: What can we say about quotients of Burau levels?

Artin: \(Bₙ/PBₙ \cong S_n\)
Stylianakis: \(Bₙ[p]/Bₙ[2p] \cong S_n\) for \(p\) prime

Theorem.

\(Bₙ[\ell]/Bₙ[2\ell] \cong S_n\) for odd \(\ell\)
\(Bₙ[\ell]/Bₙ[2\ell] \cong (\mathbb{Z}/2\mathbb{Z})^{(\ell)}\) for even \(\ell\)

Acknowledgements

We would like to thank Dr. Wade Bloomquist, Dr. Dan Margalit, Georgia Tech, and the National Science Foundation.