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How can we obtain this matrix from  
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 Main Theorem: 

�(SMod(S2)) = NSp(4,Z)(hEi)

Thank you! 
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I. Background

Definition of pseudo-Anosov map

A homeomorphism φ from a closed, orientable surface S to itself is called
pseudo-Anosov if there are two transverse, measured foliations, Fu and
Fs , along with a real number λ > 1, such that φ stretches S along Fu by
a factor of λ and contracts S along Fs by a factor of λ−1. The number λ
is known as the stretch factor of φ.

Theorem (Thurston 1974)

If λ is the stretch factor of a pseudo-Anosov homeomorphism of a genus g
surface, then λ is an algebraic unit such that [Q(λ) : Q] ≤ 6g − 6.

Main Question

Which algebraic units can appear as stretch factors?
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II. Constructions

There are several general constructions of pseudo-Anosov maps. The
following two consist of taking products of Dehn twists.

Penner’s Construction
Restriction: Shin and Strenner showed that stretch factors of
pseudo-Anosov maps coming from Penner’s construction cannot have
Galois conjugates on the unit circle.

Thurston’s Construction
Restriction: Veech showed that if λ is the stretch factor of a
pseudo-Anosov map coming from Thurston’s construction then
λ+ λ−1 is a totally real algebraic integer.
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III. Salem numbers

Salem number

A real algebraic unit, λ > 1, is called a Salem number if λ−1 is a Galois
conjugate, and all other conjugates lie on the unit circle.

Theorem A (P. 2017)

Given a Salem number λ, there are positive integers k , g such that λk is
the stretch factor of a pseudo-Anosov homeomorphism φ : Sg → Sg ,
where φ arises from Thurston’s construction. Moreover, g depends only on
the degree of λ over Q.
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IV. Connecting Salem numbers to Thurston’s construction

Thurston’s construction requires a collection of curves that cut the surface
into disks. The intersection matrix of these curves also plays a crucial role.

Theorem (P. 2017)

Every Salem number λ has a power k such that λk + λ−k is the
dominating eigenvalue of an invertible, positive, symmetric, integer matrix.

Theorem (P. 2017)

Given an invertible, positive, integer matrix Q, there is a closed, orientable
surface S along with a collection of curves that cut S into disks, such that
the intersection matrix of those curves is Q.
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V. Totally real number fields

Methods and results used to prove Theorem A can be adapted to prove
the following:

Theorem B (P. 2017)

Every totally real number field is of the form K = Q(λ+ λ−1) where λ is
the stretch factor of a pseudo-Anosov map coming from Thurston’s
construction.

Thank you!
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Spectral sequences galore

Theorem (Ozsváth, Szabó; Bloom; Scaduto; Daemi; Kronhemier, Mrowka)

Let L be a link in S3. Let Σ(L) be the double cover of S3 branched
along L. There are spectral sequences

Khovanov homology

Heegaard
Monopole

Framed instanton
Plane

Singular instanton

Lee
Bar-Natan

Szabó

Floer homology
of Σ(L)

link homology

I am missing a few words like “mirror of” and “reduced.”
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Khovanov-Floer theories

Definition (Baldwin, Hedden, and Lobb)
A Khovanov-Floer theory is a gadget:

D
link diagram

Ei(D)

spectral sequence

D D′ Fi : Ei(D)→ Ei(D′)
map of

spectral sequences
one-handle
attachment

• E2(D) = Kh(D)

• F2 agrees with the standard map Kh(D)→ Kh(D′).
• Künneth formula, etc.



Khovanov-Floer theories: the good

Theorem (Baldwin, Hedden, Lobb)
All of the homology theories from the second slide are
Khovanov-Floer theories.

Theorem (Baldwin, Hedden, Lobb)
Khovanov-Floer theories are

• link invariants.
• functorial: they assign maps to isotopy classes of link

cobordisms in S3 × I.

Everything that works for Khovanov homology works for
Khovanov-Floer theories because that’s how maps on spectral
sequences work.



Two maps on homology!

one-handle attachment

filtered chain map F

Fi : Ei(D)→ Ei(D′)
F∞

F∗

A priori, F∗ 6= F∞!



A different approach

Definition
A strong Khovanov-Floer theory is a gadget:

D
link diagram

K(D)

filtered complex

D D′ F : K(D)→ K(D′)
filtered chain maphandle attachment

so that

• For a crossingless diagrams, H(K(D)) agrees with Kh(D) (or
another Frobenius algebra).

• Handle attachment maps satisfy some relations (e.g. swapping
distant handles, Bar-Natan’s S, T, and 4Tu)

• Künneth formula, etc.



Strong Khovanov-Floer theories: the good

Definition
A strong Khovanov-Floer theory is conic if, for D with crossings,

K = cone(h : D0 → D1)

where h is a one-handle attachment map.

Theorem (S.)
Conic strong Khovanov-Floer theories are

• link invariants. (chain homotopy type)
• functorial: they assign (chain homotopy types of) maps to

isotopy classes of link cobordisms in S3 × I.

Everything that works for Bar-Natan’s cobordism-theoretic
construction of link homology works for strong Khovanov-Floer
theories.
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Strong Khovanov-Floer theories: the good

Theorem (S.)
Heegaard Floer homology, singular instanton homology, Szabó
homology, and Lee/Bar-Natan homology all produce conic strong
Khovanov-Floer theories. (The rest probably are, too.)

Theorem (S.)
A conic strong Khovanov-Floer theory yields a Khovanov-Floer
theory.



Strong Khovanov-Floer theories: what’s next

How does this help us understand invariants of transverse links
and contact structures?

What other link homology theories can we use besides Khovanov
homology? (E.g. Lin has constructed a spectral sequence from
Bar-Natan-Lee homology to monopole Floer homology)

Can we understand e.g. Heegaard Floer homology via Morse
theory on surfaces?
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What? 

Why?             

How? 
Who?  Me!

When?  Now!



• pure mapping 
classes

• isotopic to the 
identity on the 
closed surface

• denoted PBn(Sg)

What are pure surface braids?



• a real number > 1
• associated to a 

mapping class 𝑓
• denoted 𝜆 𝑓

What is the dilatation?



What did I prove?



Theorem (L., 2017)

𝑐 log
log 𝑔
𝑛 + 𝑐	 ≤ 𝐿 𝑃𝐵1 𝑆3 ≤ 𝑐4 log

𝑔
𝑛 + 𝑐4



Why should we care?



Theorem (Penner, 1991) 
L(Mod(Sg)) goes to zero as g goes to infinity. 

Theorem (Farb-Leininger-Margalit, 2008)
L(Ig) is universally bounded between 0.197 and 4.127. 



Theorem (Dowdall, Aougab—Taylor) 

1
5 log(2𝑔) ≤ 𝐿 𝑃𝐵9 𝑆3 < 4 log(𝑔) + 2 log(24)



How did I prove it?



The Upper Bound



The Upper Bound



The Upper Bound



The Lower Bound

𝑃𝐵1(𝑆3) ∋ 𝑓 ↷
Imayoshi—Ito—Yamamoto: 

“𝜆 𝐹@ ≤ 	𝜆(𝑓)”	

↶ 𝐹@

↶ 𝐹C@
𝑥 𝐹C@(𝑥)

Kra: 
“max

H	
𝑑(𝑥, 𝐹C@ 𝑥 )	 ≤ 𝜆(𝐹C@)”

𝜋

ΗM

𝜋(𝑥) 𝜋(𝐹C@ 𝑥 )
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“max
H	

d 𝑥, 𝐹@ 𝑥 	 ≤ 𝜆(𝑓)”



Theorem (L.—Parlier, 2017) 

A filling graph Γ embedded in a surface 𝑆3 has diameter 

at least 
PQR STU

V
WX

.

The Lower Bound



Thank you!

𝑃𝐵1(𝑆3) ∋ 𝑓 ↷

↶ 𝐹@

↶ 𝐹C@
𝑥 𝐹C@(𝑥)

𝜋

ΗM

𝜋(𝑥) 𝜋(𝐹C@ 𝑥 )
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Motivation

Our motivation is to better understand knot concordance.

Definition
K1 and K2 are concordant if they cobound a smooth cylinder in
S3 × [0, 1].

Definition
The concordance group is C = {knots in S3/ ∼,#}, where
K1 ∼ K2 if K1 is concordant to K2.



Open Questions

There are many open questions about knot concordance.

Question
Is every slice knot a ribbon knot?

Figure: “Square ribbon knot”; figure by David Eppstein, Wikipedia.

The boundary of a self-intersecting disk with only “ribbon
singularities” is called a ribbon knot.

Question
Is there any torsion in the concordance group C besides 2-torsion?



Truncated Heegaard Floer homology

Heegaard Floer homology is an invariant for three-manifolds
defined by Ozsváth and Szabó.

Truncated Heegaard Floer homology, denoted HF n(Y , s)
(Ozsváth-Szabó, Ozsváth-Manolescu), is the homology of the
kernel CF n(Y , s) of the multiplication map

Un : CF+(Y , s)→ CF+(Y , s)

where n ∈ Z+.

Remark
Note for n = 1, truncated Heegaard Floer homology equals
ĤF (Y , s).



Truncated Concordance Invariants

Motivated by the constructions of the Ozsváth-Szabó ν(K ) and
Hom-Wu ν+(K ), we construct a sequence of knot invariants
νn(K ), n ∈ Z:

Definition
For n > 0, define

νn(K ) = min{s ∈ Z | vns : CF n(S3
N(K ), ss)→ CF n(S3)

induces a surjection on homology},

where N is sufficiently large so that the Ozsváth-Szabó large
integer surgery formula holds, and ss denotes the restriction to
S3
N(K ) of a Spinc structure t on the corresponding 2-handle

cobordism such that

〈c1(t), [F̂ ]〉+ N = 2s,

where F̂ is a capped-off Seifert surface for K .



Truncated Concordance Invariants, continued...

Definition
For n < 0, define

νn(K ) = max{s ∈ Z | vns : CF−n(S3)→ CF−n(S3
−N(K ), ss)

induces an injection on homology},

where N is sufficiently large so that the Ozsváth-Szabó large
integer surgery formula holds, and ss denotes the restriction to
S3
−N(K ) of a Spinc structure t on the corresponding 2-handle

cobordism such that

〈c1(t), [F̂ ]〉 − N = 2s,

where F̂ is a capped-off Seifert surface for K .
For n = 0, we define ν0(K ) = τ(K ).



Properties of νn(K )

The knot invariants νn(K ), n ∈ Z, satisfy the following properties:

• νn(K ) is a concordance invariant.

• ν1(K ) = ν(K ).

• νn(K ) ≤ νn+1(K ).

• For sufficiently large n, νn(K ) = ν+(K ).

• νn(−K ) = −ν−n(K ), where −K is the mirror of K .

• νn(K ) ≤ g4(K ).



Homologically thin knots are knots with ĤFK supported in a single
δ = A−M grading.

Theorem
Let K be a homologically thin knot with τ(K ) = τ .

(i) If τ = 0, νn(K ) = 0 for all n.

(ii) If τ > 0,

νn(K ) =


0, for n ≤ −(τ + 1)/2,

τ + 2n + 1, for − τ/2 ≤ n ≤ −1,

τ, for n ≥ 0.

(iii) If τ < 0,

νn(K ) =


τ, for n ≤ 0,

τ + 2n − 1, for 1 ≤ n ≤ −τ/2,

0, for n ≥ (−τ + 1)/2.



Large Gaps

In fact, the difference between νn(K ) and νn+1(K ) can be
arbitrarily big.

Theorem
Let Tp,p+1 denote the (p, p + 1) torus knot. For p > 3,

ν−1(Tp,p+1)− ν−2(Tp,p+1) = p.



Thank you!
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Embedded Exact Lagrangian Fillings
Immersed Exact Lagrangian Fillings

Lagrangian fillings
Augmentations

Exact Lagrangian fillings

An embedded exact Lagrangian filling of Λ is a 2-dimensional
embedded surface L in (Rt × R3, ω = d(etα)) such that

L is cylindrical over Λ when t is big
enough;

there exists a function f : L→ R such

that etα
∣∣∣
TL

= df and f is constant on

Λ.

t

Λ

L

Yu Pan Augmentations and Immersed Exact Lagrangian Fillings



Embedded Exact Lagrangian Fillings
Immersed Exact Lagrangian Fillings

Lagrangian fillings
Augmentations

Augmentations

By [Ekholm-Honda-Kálmán, ’12],
an exact Lagrangian filling L =⇒ an augmentation ε of A(Λ)

Λ

L

(
A(Λ), ∂

)y
(Z2, 0)

ε

Yu Pan Augmentations and Immersed Exact Lagrangian Fillings



Embedded Exact Lagrangian Fillings
Immersed Exact Lagrangian Fillings

Lagrangian fillings
Augmentations

Correspondence

Derived Fukaya Category Augmentation Category

Objects: Exact Lagrangian Fillings Augmentations

However, not all the augmentations of A(Λ) are induced from
embedded exact Lagrangian fillings of Λ.

Yu Pan Augmentations and Immersed Exact Lagrangian Fillings
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Augmentations induced from immersed exact Lagrangian fillings

Immersed Exact Lagrangian fillings
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Augmentations induced from immersed exact Lagrangian
fillings

Suppose that Σ can be lifted to an embedded Legendrian surface L
in R× R× R3 and A(L) has an augmentation εL.
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Augmentations induced from immersed exact Lagrangian
fillings

Suppose that Σ can be lifted to an embedded Legendrian surface L
in R× R× R3 and A(L) has an augmentation εL.
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Thus ε = εL ◦ f is an
augmentation of A(Λ).
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Augmentations induced from immersed exact Lagrangian fillings

Result

Theorem (P.-D. Rutherford)

All the augmentations of A(Λ) are induced from possibly immersed
exact Lagrangian fillings of Λ.
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