Lightning Talks III Tech Topology Conference

 December 10, 2017
COVERING SPACES, MAPPING CLASS GROUPS, AND THE SYMPLECTIC REPRESENTATION

Sarah Davis

With Laura Stordy, Becca Winarski, Ziyi Zhou
Georgia Institute of Technology
Tech Topology Conference

3-Fold Branched Cover

Symmetric Mapping Class Group

$$
\operatorname{SMod}\left(S_{2}\right)=N_{\operatorname{Mod}\left(S_{2}\right)}(\langle R\rangle)
$$

Symplectic Representation

$$
\Phi: \operatorname{Mod}\left(S_{2}\right) \rightarrow \operatorname{Sp}(4, \mathbb{Z})
$$

Example:

$$
\Phi: R \mapsto E=\left[\begin{array}{rrrr}
0 & 0 & -1 & 0 \\
0 & -1 & 0 & -1 \\
1 & 0 & -1 & 0 \\
0 & 1 & 0 & 0
\end{array}\right]
$$

McMullen's Question

Question: Is $\Phi\left(\operatorname{SMod}\left(S_{g}\right)\right)$ finite index in

$$
N_{\mathrm{Sp}(2 g, \mathbb{Z})}\left(\Phi\left(\left\langle R_{d}\right\rangle\right)\right) ?
$$

Venkataramana: Yes, if \# branch points ≥ 2 *degree

Main Theorem:

$\Phi\left(\operatorname{SMod}\left(S_{2}\right)\right)$
 $N_{\mathrm{Sp}(4, \mathbb{Z})}(\langle E\rangle)$

Main Theorem:

$$
\Phi\left(\operatorname{SMod}\left(S_{2}\right)\right)=N_{\mathrm{Sp}(4, \mathbb{Z})}(\langle E\rangle)
$$

$\Phi\left(\operatorname{SMod}\left(S_{2}\right)\right)=N_{\operatorname{Sp}(4, \mathbb{Z})}(\langle E\rangle)$

Find $\quad M \in \mathrm{GL}(4, \mathbb{Z})$ such that:

$$
M E M^{-1}=E^{ \pm 1}
$$

Lemma: It is enough to find M such that:

$$
M E M^{-1}=E^{-1}
$$

MATLAB Output

$$
M=\left[\begin{array}{rrrr}
-z_{0} & z_{1}-z_{2} & z_{0}+z_{3} & z_{1} \\
-z_{4}-z_{5} & -z_{6} & z_{4} & z_{7}-z_{6} \\
z_{3} & z_{1} & z_{0} & z_{2} \\
z_{4} & z_{7} & z_{5} & z_{6}
\end{array}\right]
$$

Refine using the symplectic condition

$$
M \Omega M^{T}=\Omega
$$

MATLAB Output

$$
\left.\begin{array}{l}
{\left[\begin{array}{rrrr}
2 x & 1 & -x & 0 \\
-1 & 0 & 0 & 0 \\
x & 0 & -2 x & -1 \\
0 & 0 & 1 & 0
\end{array}\right],\left[\begin{array}{rrrr}
2 x & -1 & -x & 0 \\
1 & 0 & 0 & 0 \\
x & 0 & -2 x & 1 \\
0 & 0 & -1 & 0
\end{array}\right],\left[\begin{array}{rrrr}
0 & 1 & 0 & 0 \\
-1 & -2 x & 0 & -x \\
0 & 0 & 0 & -1 \\
0 & x & 1 & 2 x
\end{array}\right],\left[\begin{array}{rrr}
0 & -1 & 0 \\
1 & -2 x & 0 \\
-x \\
0 & 0 & 0 \\
0 & x & -1
\end{array}\right) 2 x}
\end{array}\right],\left[\begin{array}{rrrr}
x & 1 & x & 1 \\
0 & 0 & -1 & 0 \\
2 x & 1 & -x & 0 \\
-1 & 0 & 1 & 0
\end{array}\right],\left[\begin{array}{rrrr}
x & -1 & x & -1 \\
0 & 0 & 1 & 0 \\
2 x & -1 & -x & 0 \\
1 & 0 & -1 & 0
\end{array}\right],\left[\begin{array}{rrrr}
0 & 1 & 0 & 1 \\
0 & x & -1 & 2 x \\
0 & 1 & 0 & 0 \\
-1 & x & 1 & -x
\end{array}\right],\left[\begin{array}{rrrr}
0 & -1 & 0 & -1 \\
0 & x & 1 & 2 x \\
0 & -1 & 0 & 0 \\
1 & x & -1 & -x
\end{array}\right],\left[\begin{array}{rrrr}
0 & x & -1 & 2 x \\
0 & 0 & 0 & -1 \\
-1 & 2 x & 0 & x \\
0 & -1 & 0 & 0
\end{array}\right],\left[\begin{array}{rrrr}
0 & 0 & 1 & 0 \\
x & 0 & -2 x & 1 \\
1 & 0 & 0 & 0 \\
-2 x & 1 & x & 0
\end{array}\right],\left[\begin{array}{rrrr}
0 & 0 & -1 & 0 \\
x & 0 & -2 x & -1 \\
-1 & 0 & 0 & 0 \\
-2 x & -1 & x & 0
\end{array}\right] .
$$

$\Phi\left(\operatorname{SMod}\left(S_{2}\right)\right)=N_{\operatorname{Sp}(4, \mathbb{Z})}(\langle E\rangle)$

Ghaswala-Winarski give generators for $\operatorname{SMod}\left(S_{2}\right)$.

$$
\Phi\left(\widetilde{T}_{\alpha}\right)=\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
2 & 1 & -1 & 0 \\
0 & 0 & 1 & 0 \\
-1 & 0 & 2 & 1
\end{array}\right]
$$

How can we obtain this matrix from $\Phi\left(\operatorname{SMod}\left(S_{2}\right)\right) ?$

$$
\left[\begin{array}{rrrr}
2 x & 1 & -x & 0 \\
-1 & 0 & 0 & 0 \\
x & 0 & -2 x & -1 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

$$
\left[\begin{array}{rrrr}
2 x & 1 & -x & 0 \\
-1 & 0 & 0 & 0 \\
x & 0 & -2 x & -1 \\
0 & 0 & 1 & 0
\end{array}\right]=\Phi\left(\widetilde{H_{\delta}} \circ{\widetilde{T_{\alpha}}}^{x} \circ \widetilde{H_{c}}\right)
$$

H_{δ}

T_{α}

$H_{c}=H_{\eta} \circ H_{\iota}$

Thank you!

Main Theorem:

$\Phi\left(\operatorname{SMod}\left(S_{2}\right)\right)=N_{\operatorname{Sp}(4, \mathbb{Z})}(\langle E\rangle)$

Lightning Talks III Tech Topology Conference

 December 10, 2017
Salem Number Stretch Factors

Joshua Pankau
University of California, Santa Barbara
Advisor: Darren Long

12/10/2017

I. Background

Definition of pseudo-Anosov map

A homeomorphism ϕ from a closed, orientable surface S to itself is called pseudo-Anosov if there are two transverse, measured foliations, \mathcal{F}_{u} and \mathcal{F}_{s}, along with a real number $\lambda>1$, such that ϕ stretches S along \mathcal{F}_{u} by a factor of λ and contracts S along \mathcal{F}_{s} by a factor of λ^{-1}. The number λ is known as the stretch factor of ϕ.

I. Background

Definition of pseudo-Anosov map

A homeomorphism ϕ from a closed, orientable surface S to itself is called pseudo-Anosov if there are two transverse, measured foliations, \mathcal{F}_{u} and \mathcal{F}_{s}, along with a real number $\lambda>1$, such that ϕ stretches S along \mathcal{F}_{u} by a factor of λ and contracts S along \mathcal{F}_{s} by a factor of λ^{-1}. The number λ is known as the stretch factor of ϕ.

Theorem (Thurston 1974)

If λ is the stretch factor of a pseudo-Anosov homeomorphism of a genus g surface, then λ is an algebraic unit such that $[\mathbb{Q}(\lambda): \mathbb{Q}] \leq 6 g-6$.

I. Background

Definition of pseudo-Anosov map

A homeomorphism ϕ from a closed, orientable surface S to itself is called pseudo-Anosov if there are two transverse, measured foliations, \mathcal{F}_{u} and \mathcal{F}_{s}, along with a real number $\lambda>1$, such that ϕ stretches S along \mathcal{F}_{u} by a factor of λ and contracts S along \mathcal{F}_{s} by a factor of λ^{-1}. The number λ is known as the stretch factor of ϕ.

Theorem (Thurston 1974)

If λ is the stretch factor of a pseudo-Anosov homeomorphism of a genus g surface, then λ is an algebraic unit such that $[\mathbb{Q}(\lambda): \mathbb{Q}] \leq 6 g-6$.

Main Question

Which algebraic units can appear as stretch factors?

II. Constructions

There are several general constructions of pseudo-Anosov maps. The following two consist of taking products of Dehn twists.

II. Constructions

There are several general constructions of pseudo-Anosov maps. The following two consist of taking products of Dehn twists.

- Penner's Construction

II. Constructions

There are several general constructions of pseudo-Anosov maps. The following two consist of taking products of Dehn twists.

- Penner's Construction
- Thurston's Construction

II. Constructions

There are several general constructions of pseudo-Anosov maps. The following two consist of taking products of Dehn twists.

- Penner's Construction
- Restriction: Shin and Strenner showed that stretch factors of pseudo-Anosov maps coming from Penner's construction cannot have Galois conjugates on the unit circle.
- Thurston's Construction

II. Constructions

There are several general constructions of pseudo-Anosov maps. The following two consist of taking products of Dehn twists.

- Penner's Construction
- Restriction: Shin and Strenner showed that stretch factors of pseudo-Anosov maps coming from Penner's construction cannot have Galois conjugates on the unit circle.
- Thurston's Construction
- Restriction: Veech showed that if λ is the stretch factor of a pseudo-Anosov map coming from Thurston's construction then $\lambda+\lambda^{-1}$ is a totally real algebraic integer.

III. Salem numbers

Salem number

A real algebraic unit, $\lambda>1$, is called a Salem number if λ^{-1} is a Galois conjugate, and all other conjugates lie on the unit circle.

III. Salem numbers

Salem number

A real algebraic unit, $\lambda>1$, is called a Salem number if λ^{-1} is a Galois conjugate, and all other conjugates lie on the unit circle.

Theorem A (P. 2017)

Given a Salem number λ, there are positive integers k, g such that λ^{k} is the stretch factor of a pseudo-Anosov homeomorphism $\phi: S_{g} \rightarrow S_{g}$, where ϕ arises from Thurston's construction. Moreover, g depends only on the degree of λ over \mathbb{Q}.

IV. Connecting Salem numbers to Thurston's construction

Thurston's construction requires a collection of curves that cut the surface into disks. The intersection matrix of these curves also plays a crucial role.

IV. Connecting Salem numbers to Thurston's construction

Thurston's construction requires a collection of curves that cut the surface into disks. The intersection matrix of these curves also plays a crucial role.

Theorem (P. 2017)

Every Salem number λ has a power k such that $\lambda^{k}+\lambda^{-k}$ is the dominating eigenvalue of an invertible, positive, symmetric, integer matrix.

IV. Connecting Salem numbers to Thurston's construction

Thurston's construction requires a collection of curves that cut the surface into disks. The intersection matrix of these curves also plays a crucial role.

Theorem (P. 2017)

Every Salem number λ has a power k such that $\lambda^{k}+\lambda^{-k}$ is the dominating eigenvalue of an invertible, positive, symmetric, integer matrix.

Theorem (P. 2017)

Given an invertible, positive, integer matrix Q, there is a closed, orientable surface S along with a collection of curves that cut S into disks, such that the intersection matrix of those curves is Q.

V. Totally real number fields

Methods and results used to prove Theorem A can be adapted to prove the following:

Theorem B (P. 2017)

Every totally real number field is of the form $K=\mathbb{Q}\left(\lambda+\lambda^{-1}\right)$ where λ is the stretch factor of a pseudo-Anosov map coming from Thurston's construction.

V. Totally real number fields

Methods and results used to prove Theorem A can be adapted to prove the following:

Theorem B (P. 2017)

Every totally real number field is of the form $K=\mathbb{Q}\left(\lambda+\lambda^{-1}\right)$ where λ is the stretch factor of a pseudo-Anosov map coming from Thurston's construction.

Thank you!

Lightning Talks III Tech Topology Conference

 December 10, 2017
WhY are there are so many spectral SEQUENCES FROM KHOVANOV HOMOLOGY?

Adam Saltz (University of Georgia)
December 10, 2017
Georgia Tech
Tech Topology Conference

Spectral sequences galore

Theorem (Ozsváth, Szabó; Bloom; Scaduto; Daemi; Kronhemier, Mrowka)
Let L be a link in S^{3}. Let $\Sigma(L)$ be the double cover of S^{3} branched along L. There are spectral sequences

Spectral sequences galore

Theorem (Ozsváth, Szabó; Bloom; Scaduto; Daemi; Kronhemier, Mrowka)
Let L be a link in S^{3}. Let $\Sigma(L)$ be the double cover of S^{3} branched along L. There are spectral sequences

I am missing a few words like "mirror of" and "reduced."

Khovanov-Floer theories

Definition (Baldwin, Hedden, and Lobb)

A Khovanov-Floer theory is a gadget:

- $E^{2}(\mathcal{D})=\operatorname{Kh}(\mathcal{D})$
- F_{2} agrees with the standard map $\operatorname{Kh}(\mathcal{D}) \rightarrow \operatorname{Kh}\left(\mathcal{D}^{\prime}\right)$.
- Künneth formula, etc.

Khovanov-FLoER THEORIES: THE GOOD

Theorem (Baldwin, Hedden, Lobb)

All of the homology theories from the second slide are Khovanov-Floer theories.

Theorem (Baldwin, Hedden, Lobb)

Khovanov-Floer theories are

- link invariants.
- functorial: they assign maps to isotopy classes of link cobordisms in $S^{3} \times I$.

Everything that works for Khovanov homology works for Khovanov-Floer theories because that's how maps on spectral sequences work.

TwO MAPS ON HOMOLOGY!

one-handle attachment
$\xrightarrow[\longrightarrow]{ }$ filtered chain map F

A priori, $F_{*} \neq F_{\infty}$!

A DIFFERENT APPROACH

Definition

A strong Khovanov-Floer theory is a gadget:
$\mathcal{D} \leadsto \sim \sim \mathcal{K}(\mathcal{D})$
link diagram
filtered complex
$\mathcal{D} \longrightarrow \mathcal{D}^{\prime} \simeq \mathrm{F}: \mathcal{K}(\mathcal{D}) \rightarrow \mathcal{K}\left(\mathcal{D}^{\prime}\right)$
handle attachment
filtered chain map
so that

- For a crossingless diagrams, $H(\mathcal{K}(\mathcal{D})$) agrees with $\operatorname{Kh}(\mathcal{D})$ (or another Frobenius algebra).
- Handle attachment maps satisfy some relations (e.g. swapping distant handles, Bar-Natan's S, T, and 4Tu)
- Künneth formula, etc.

Strong Khovanov-Floer theories: the good

Definition

A strong Khovanov-Floer theory is conic if, for \mathcal{D} with crossings,

$$
\mathcal{K}=\operatorname{cone}\left(\mathfrak{h}: \mathcal{D}_{0} \rightarrow \mathcal{D}_{1}\right)
$$

where \mathfrak{h} is a one-handle attachment map.

Strong Khovanov-Floer theories: the good

Definition

A strong Khovanov-Floer theory is conic if, for \mathcal{D} with crossings,

$$
\mathcal{K}=\operatorname{cone}\left(\mathfrak{h}: \mathcal{D}_{0} \rightarrow \mathcal{D}_{1}\right)
$$

where \mathfrak{h} is a one-handle attachment map.

Theorem (S.)

Conic strong Khovanov-Floer theories are

- link invariants. (chain homotopy type)
- functorial: they assign (chain homotopy types of) maps to isotopy classes of link cobordisms in $S^{3} \times I$.

Everything that works for Bar-Natan's cobordism-theoretic construction of link homology works for strong Khovanov-Floer theories.

Strong Khovanov-Floer theories: THE GOOD

Theorem (S.)

Heegaard Floer homology, singular instanton homology, Szabó homology, and Lee/Bar-Natan homology all produce conic strong Khovanov-Floer theories. (The rest probably are, too.)

Theorem (S.)

A conic strong Khovanov-Floer theory yields a Khovanov-Floer theory.

Strong Khovanov-Floer theories: what's next

ジ

How does this help us understand invariants of transverse links and contact structures?

```
\ddot { B }
```

What other link homology theories can we use besides Khovanov homology? (E.g. Lin has constructed a spectral sequence from Bar-Natan-Lee homology to monopole Floer homology)

Na $\ddot{\vec{j}}$ da

Can we understand e.g. Heegaard Floer homology via Morse theory on surfaces?

Lightning Talks III Tech Topology Conference

 December 10, 2017
Least Dilatation of Pure Surface Braids

Marissa Loving
University of Illinois at Urbana-Champaign

What?
Why?

How?

Who?

When?

What?
Why?

How?

Who? Me!

When? Now!

What?

Why?

How?
Who? Me!
When? Now!

What are pure surface braids?

- pure mapping classes
- isotopic to the identity on the closed surface
- denoted $\mathrm{PB}_{\mathrm{n}}\left(\mathrm{S}_{\mathrm{g}}\right)$

What is the dilatation?

- a real number >1
- associated to a mapping class f
- denoted $\lambda(f)$

What did I prove?

Theorem (L., 2017)

$c \log \left\lceil\frac{\log g}{n}\right\rceil+c \leq L\left(P B_{n}\left(S_{g}\right)\right) \leq c^{\prime} \log \left\lceil\frac{g}{n}\right\rceil+c^{\prime}$

Why should we care?

Theorem (Penner, 199I)

$L\left(\operatorname{Mod}\left(S_{g}\right)\right)$ goes to zero as g goes to infinity.

Theorem (Farb-Leininger-Margalit, 2008)
$\mathrm{L}\left(I_{\mathrm{g}}\right)$ is universally bounded between 0.197 and 4.I27.

Theorem (Dowdall, Aougab-Taylor)

$\frac{1}{5} \log (2 g) \leq L\left(P B_{1}\left(S_{g}\right)\right)<4 \log (g)+2 \log (24)$

How did I prove it?

The Upper Bound

The Upper Bound

The Upper Bound

The Lower Bound

The Lower Bound

 $" \max _{x} \mathrm{~d}\left(x, F_{t}(x)\right) \leq \lambda(f) "$
The Lower Bound

Theorem (L.—Parlier, 2017)
A filling graph Γ embedded in a surface S_{g} has diameter at least $\frac{\log \left(\frac{g-2}{3}\right)}{40}$.

Lightning Talks III Tech Topology Conference

 December 10, 2017
Truncated Heegaard Floer homology and concordance invariants

Linh Truong

Columbia University
Tech Topology Conference, December 2017

Motivation

Our motivation is to better understand knot concordance.
Definition
K_{1} and K_{2} are concordant if they cobound a smooth cylinder in $S^{3} \times[0,1]$.

Definition
The concordance group is $\mathcal{C}=\left\{\right.$ knots in $\left.S^{3} / \sim, \#\right\}$, where $K_{1} \sim K_{2}$ if K_{1} is concordant to K_{2}.

Open Questions

There are many open questions about knot concordance.
Question
Is every slice knot a ribbon knot?

Figure: "Square ribbon knot"; figure by David Eppstein, Wikipedia.
The boundary of a self-intersecting disk with only "ribbon singularities" is called a ribbon knot.

Question
Is there any torsion in the concordance group \mathcal{C} besides 2-torsion?

Truncated Heegaard Floer homology

Heegaard Floer homology is an invariant for three-manifolds defined by Ozsváth and Szabó.

Truncated Heegaard Floer homology, denoted $\operatorname{HF}^{n}(Y, \mathfrak{s})$ (Ozsváth-Szabó, Ozsváth-Manolescu), is the homology of the kernel $C F^{n}(Y, \mathfrak{s})$ of the multiplication map

$$
U^{n}: C F^{+}(Y, \mathfrak{s}) \rightarrow C F^{+}(Y, \mathfrak{s})
$$

where $n \in \mathbb{Z}_{+}$.
Remark
Note for $n=1$, truncated Heegaard Floer homology equals $\widehat{H F}(Y, \mathfrak{s})$.

Truncated Concordance Invariants

Motivated by the constructions of the Ozsváth-Szabó $\nu(K)$ and Hom-Wu $\nu^{+}(K)$, we construct a sequence of knot invariants $\nu_{n}(K), n \in \mathbb{Z}$:

Definition

For $n>0$, define

$$
\nu_{n}(K)=\min \left\{s \in \mathbb{Z} \mid v_{s}^{n}: C F^{n}\left(S_{N}^{3}(K), \mathfrak{s}_{s}\right) \rightarrow C F^{n}\left(S^{3}\right)\right.
$$ induces a surjection on homology\},

where N is sufficiently large so that the Ozsváth-Szabó large integer surgery formula holds, and \mathfrak{s}_{s} denotes the restriction to $S_{N}^{3}(K)$ of a Spin^{c} structure \mathfrak{t} on the corresponding 2-handle cobordism such that

$$
\left\langle c_{1}(\mathfrak{t}),[\widehat{F}]\right\rangle+N=2 s
$$

where \widehat{F} is a capped-off Seifert surface for K.

Truncated Concordance Invariants, continued...

Definition

For $n<0$, define

$$
\begin{aligned}
\nu_{n}(K)=\max \{s \in \mathbb{Z} \mid & v_{s}^{n}: C F^{-n}\left(S^{3}\right) \rightarrow C F^{-n}\left(S_{-N}^{3}(K), \mathfrak{s}_{s}\right) \\
& \text { induces an injection on homology }\},
\end{aligned}
$$

where N is sufficiently large so that the Ozsváth-Szabó large integer surgery formula holds, and \mathfrak{s}_{s} denotes the restriction to $S_{-N}^{3}(K)$ of a Spin^{c} structure \mathfrak{t} on the corresponding 2-handle cobordism such that

$$
\left\langle c_{1}(\mathfrak{t}),[\widehat{F}]\right\rangle-N=2 s
$$

where \widehat{F} is a capped-off Seifert surface for K.
For $n=0$, we define $\nu_{0}(K)=\tau(K)$.

Properties of $\nu_{n}(K)$

The knot invariants $\nu_{n}(K), n \in \mathbb{Z}$, satisfy the following properties:

- $\nu_{n}(K)$ is a concordance invariant.
- $\nu_{1}(K)=\nu(K)$.
- $\nu_{n}(K) \leq \nu_{n+1}(K)$.
- For sufficiently large $n, \nu_{n}(K)=\nu^{+}(K)$.
- $\nu_{n}(-K)=-\nu_{-n}(K)$, where $-K$ is the mirror of K.
- $\nu_{n}(K) \leq g_{4}(K)$.

Homologically thin knots are knots with $\widehat{H F K}$ supported in a single $\delta=A-M$ grading.

Theorem

Let K be a homologically thin knot with $\tau(K)=\tau$.
(i) If $\tau=0, \nu_{n}(K)=0$ for all n.
(ii) If $\tau>0$,

$$
\nu_{n}(K)= \begin{cases}0, & \text { for } n \leq-(\tau+1) / 2 \\ \tau+2 n+1, & \text { for }-\tau / 2 \leq n \leq-1 \\ \tau, & \text { for } n \geq 0\end{cases}
$$

(iii) If $\tau<0$,

$$
\nu_{n}(K)= \begin{cases}\tau, & \text { for } n \leq 0 \\ \tau+2 n-1, & \text { for } 1 \leq n \leq-\tau / 2 \\ 0, & \text { for } n \geq(-\tau+1) / 2\end{cases}
$$

Large Gaps

In fact, the difference between $\nu_{n}(K)$ and $\nu_{n+1}(K)$ can be arbitrarily big.

Theorem
Let $T_{p, p+1}$ denote the $(p, p+1)$ torus knot. For $p>3$,

$$
\nu_{-1}\left(T_{p, p+1}\right)-\nu_{-2}\left(T_{p, p+1}\right)=p
$$

Thank you!

Lightning Talks III Tech Topology Conference

 December 10, 2017
Augmentations and Immersed Exact Lagrangian Fillings

Yu Pan

MIT

Tech Topology Conference Dec. 10th, 2017

Exact Lagrangian fillings

An embedded exact Lagrangian filling of Λ is a 2-dimensional embedded surface L in $\left(\mathbb{R}_{t} \times \mathbb{R}^{3}, \omega=d\left(e^{t} \alpha\right)\right)$ such that

- L is cylindrical over Λ when t is big enough;
- there exists a function $f: L \rightarrow \mathbb{R}$ such that $\left.e^{t} \alpha\right|_{T L}=d f$ and f is constant on Λ.

Augmentations

By [Ekholm-Honda-Kálmán, '12],
an exact Lagrangian filling $\mathrm{L} \Longrightarrow$ an augmentation ϵ of $\mathcal{A}(\Lambda)$

Correspondence

Derived Fukaya Category

Augmentation Category

Correspondence

Derived Fukaya Category

Objects:

Augmentation Category

Augmentations

Correspondence

Derived Fukaya Category
 Augmentation Category

Objects: Exact Lagrangian Fillings Augmentations

However, not all the augmentations of $\mathcal{A}(\Lambda)$ are induced from embedded exact Lagrangian fillings of Λ.

Immersed Exact Lagrangian fillings

Augmentations induced from immersed exact Lagrangian fillings

Suppose that Σ can be lifted to an embedded Legendrian surface L in $\mathbb{R} \times \mathbb{R} \times \mathbb{R}^{3}$ and $\mathcal{A}(L)$ has an augmentation ϵ_{L}.

$(\mathcal{A}(\Lambda), \partial)$

$(\mathcal{A}(L), \partial)$

Augmentations induced from immersed exact Lagrangian fillings

Suppose that Σ can be lifted to an embedded Legendrian surface L in $\mathbb{R} \times \mathbb{R} \times \mathbb{R}^{3}$ and $\mathcal{A}(L)$ has an augmentation ϵ_{L}.

$(\mathcal{A}(\Lambda), \partial)$
Thus $\epsilon=\epsilon_{L} \circ f$ is an augmentation of $\mathcal{A}(\Lambda)$.
$(\mathcal{A}(L), \partial)$

$$
\downarrow \epsilon_{L}
$$

$\left(\mathbb{Z}_{2}, 0\right)$

Result

> Theorem (P.-D. Rutherford)
> All the augmentations of $\mathcal{A}(\Lambda)$ are induced from possibly immersed exact Lagrangian fillings of Λ.

Lightning Talks III Tech Topology Conference

 December 10, 2017
Trisections of Complex Surfaces
 with Jeffrey Meier and Alex Zupan

Tech Topology 2017

Trisections of 4-manifolds

Quick Notes Page 3

K3

The complex surface K 3 is the 2 -fold branched cover of CP^{2} over a degree 6 curve

Section 0.0
Stade 3

Quick Notes Page 4

Exotic 4-manifolds

For $d \geq 5$, the degree d hypersurface S_{d} in $\mathbb{C P}^{3}$ is an exotic 4-manifold.
S_{d} is the d-fold branched cover of a degree d curve in $\mathbb{C P}^{2}$.

There is a homeomorphism $\zeta: \Sigma_{53} \rightarrow \Sigma_{53}$ in the Torelli group $\operatorname{Tor}\left(\Sigma_{53}\right)$ that does not extend across the genus 53 handlebody H_{53} but

$9 \mathrm{CP}^{2} \# 44 \overline{\mathrm{CP}}^{2}$	S_{5}
$S^{3} \cong H_{\alpha} \cup_{\phi_{1}} H_{\gamma}$	$S^{3} \cong H_{\alpha} \cup_{\text {¢ᄋ } 1} H_{\gamma}$
$\cong H_{\beta} \cup_{\phi_{2}} H_{\gamma}$	$\cong H_{\beta} \cup_{\zeta \text { o中 } 2} H_{\gamma}$

Lightning Talks III Tech Topology Conference

 December 10, 2017