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Introduction

Closing up the ends of a braid gives a link, called a closed braid.

Closed BraidBraid

Question

Is every link a closed braid?
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Introduction

Closing up the ends of a braid gives a link, called a closed braid.

Closed BraidBraid

Alexander’s Theorem (1923)

Every oriented link in S3 is isotopic to a closed braid.

The braid index of a link L in R3 is the minimum number of
strands required to express it as a closed braid, denoted Braid(L).

Sudipta Kolay Braid index December 6, 2019 2 / 7



Braid index under connect sum and generalized cabling

Theorem (Birman-Menasco 1990)

For knots K1,K2 in S3,

Braid(K1#K2) = Braid(K1) + Braid(K2)− 1.
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Braid index under connect sum and generalized cabling

Theorem (Birman-Menasco 1990)

For knots K1,K2 in S3,

Braid(K1#K2) = Braid(K1) + Braid(K2)− 1.

Theorem (Williams 1992)

For a non-trivial knot K in R3, with pattern a closed n-braid

Braid(P (K)) = n · Braid(K).
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Closed braid in higher dimensions

Definition

An embedding f :Mk ↪→ Sk ×D2 ⊂ Sk+2 will be called a closed
braid if pr1 ◦ f :Mk → Sk is a branched covering map.
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Closed braid in higher dimensions

Definition

An embedding f :Mk ↪→ Sk ×D2 ⊂ Sk+2 will be called a closed
braid if pr1 ◦ f :Mk → Sk is a branched covering map.

Analogues of Alexander’s Theorem

For n ≤ 5, every codimension two embedded orientable
submanifold in Sn is isotopic to a closed braid.

smooth ribbon surfaces in R4, Rudolph (1983).

k = 2 Viro (1990), Kamada (1994).

k = 3 in the PL category, K. (2017).
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Braiding the standard torus
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Braiding the standard torus

Sudipta Kolay Braid index December 6, 2019 5 / 7



Braid index under connect sum

Theorem (Kamada-Satoh-Takabayashi 2006)

For non-trivial surface knots K1,K2 in S4,

Braid(K1#K2) ≤ Braid(K1) + Braid(K2)− 2.
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Braid index under connect sum

Theorem (Kamada-Satoh-Takabayashi 2006)

For non-trivial surface knots K1,K2 in S4,

Braid(K1#K2) ≤ Braid(K1) + Braid(K2)− 2.

Sketch of an alternative proof (K.):
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Braid index under connect sum

Theorem (Kamada-Satoh-Takabayashi 2006)

For non-trivial surface knots K1,K2 in S4,

Braid(K1#K2) ≤ Braid(K1) + Braid(K2)− 2.

Question (Kamada-Satoh-Takabayashi 2006)

Are there 2-knots K1,K2 in S4 so that:

Braid(K1#K2) < Braid(K1) + Braid(K2)− 2?
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Braid index under connect sum

Theorem (Kamada-Satoh-Takabayashi 2006)

For non-trivial surface knots K1,K2 in S4,

Braid(K1#K2) ≤ Braid(K1) + Braid(K2)− 2.

Question (Kamada-Satoh-Takabayashi 2006)

Are there 2-knots K1,K2 in S4 so that:

Braid(K1#K2) < Braid(K1) + Braid(K2)− 2?

Yes (K.), for K1 = K2 being the 2-knot determined by

(σ1, σ
−1
1 , σ2, σ

−1
2 , w−1σ3w,w

−1σ−1
3 w),where w = σ22σ

2
1σ

2
2σ

2
3
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Theorem (K. 2019)

There cannot be constants C, D so that for any 2-knots K1,K2,
and any non-trivial 2-knot K, satisfies:

Braid(K1#K2) ≥ Braid(K1) + Braid(K2)− C,

Braid(P (K)) ≥ deg(P ) · Braid(K)−D.
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Theorem (K. 2019)

There cannot be constants C, D so that for any 2-knots K1,K2,
and any non-trivial 2-knot K, satisfies:

Braid(K1#K2) ≥ Braid(K1) + Braid(K2)− C,

Braid(P (K)) ≥ deg(P ) · Braid(K)−D.

Thank You!
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Ribbon cobordisms

For compact 3-manifolds Y− and Y+ (with same ∂), a
cobordism

W : Y− → Y+

is made up of 1-, 2-, and 3-handles
Ribbon: does not have 3-handles
Natural examples: Stein cobordisms between contact
3-manifolds
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Why “ribbon”?

Ans: Related to ribbon concordances of knots in S3, which
are concordances with 0- and 1-handles, but no 2-handles

Observation
If C : K− → K+ is a ribbon concordance, then the exterior

Y± := S3 \K±

W := (S3 × [0, 1]) \ C
gives a ribbon cobordism W : Y− → Y+.

Here, homology cobordism means that the maps
H∗(Y−)→ H∗(W )← H∗(Y+)

induced by inclusion are isomorphisms.
W , like C, has no topology in interior (detected by homology)
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Fundamental groups

Y± = S3 \K±, W = (S3 × [0, 1]) \ C

Theorem (Gordon 1981)
If C : K− → K+ is a ribbon concordance, then

π1(Y−)→ π1(W )← π1(Y+).

Proof.
Uses the residual finiteness of knot groups π1(Y±).
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Several decades later...

Observation
Geometrization (Perelman 2006) implies residual finiteness for
closed 3-manifold groups.

Theorem (Gordon 1981)
If C : K− → K+ is a ribbon concordance, then

π1(Y−) ↪→ π1(W )� π1(Y+).

Roughly: π1(Y−) is “no bigger” than π1(Y+)
How can we use this?
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Main results

Observation
π1(Y ) determines the Thurston geometry of Y (if it has one).

Theorem (Daemi–Lidman–Vela-Vick–W.)
If W : Y− → Y+ is a ribbon homology cobordism, then

The Thurston geometries of Y− and Y+ satisfy a hierarchy.
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Ribbon homology cobordisms and Thurston geometries



Main results
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The dimension of the G-representation variety of Y− is at
most that of Y+, for a compact Lie group G.
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Next idea: The SU(2)-representations of π1(Y ) are related to
the instanton Floer homology I](Y )
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Next idea: Similarly for Heegaard Floer homology!



Main results

Theorem (Daemi–Lidman–Vela-Vick–W.)
If W : Y− → Y+ is a ribbon homology cobordism, then

The Thurston geometries of Y− and Y+ satisfy a hierarchy.
The dimension of the G-representation variety of Y− is at
most that of Y+.
I](W ) : I](Y−)→ I](Y+) is injective.

Note: Conjecturally, I](Y ) ∼= ĤF(Y ) (Heegaard Floer)
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Main results

Theorem (Daemi–Lidman–Vela-Vick–W.)
If W : Y− → Y+ is a ribbon homology cobordism, then

The Thurston geometries of Y− and Y+ satisfy a hierarchy.
The dimension of the G-representation variety of Y− is at
most that of Y+.
I](W ) : I](Y−)→ I](Y+) is injective.
F̂W : ĤF(Y−)→ ĤF(Y+) is injective.



Sketch of proof for Floer homologies

Doubling trick:

Attaching S1 ×D3  X := (Y− × [0, 1]) ] (S1 × S3)
Attaching D2 × S2  D(W ) := W ∪Y+ (−W )



Application to Dehn surgery

Theorem (Daemi–Lidman–Vela-Vick–W.)
Suppose that Y is a Seifert fibered homology sphere, K is a
null-homotopic knot in Y , and Y0(K) ∼= N ] (S1 × S2). Then
N ∼= Y .

Proof.
Idea: A natural ribbon homology cobordism from N to Y .



Application to Dehn surgery

Theorem (Daemi–Lidman–Vela-Vick–W.)
Suppose that Y is a Seifert fibered homology sphere, K is a
null-homotopic knot in Y , and Y0(K) ∼= N ] (S1 × S2). Then
N ∼= Y .

Proof.
Idea: A natural ribbon homology cobordism from N to Y .



Thank you!

Attaching S1 ×D3  X := (Y− × [0, 1]) ] (S1 × S3)
Attaching D2 × S2  D(W ) := W ∪Y+ (−W )



Finite Quotients of 
Braid Groups

Lily Li and Caleb Partin
Joint Work with Alice Chudnovsky and Kevin Kordek



Main Result

Finite Quotients of Braid Groups







Fundamental Lemma of Totally Symmetric Sets

The image of a totally symmetric set under a homomorphism is a totally 
symmetric set.



Fundamental Lemma of Totally Symmetric Sets

The image of a totally symmetric set under a homomorphism is a totally 
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BUT IT GETS BETTER



Fundamental Lemma of Totally Symmetric Sets

The image of a totally symmetric set of size n under a homomorphism is a totally 
symmetric set of size n or 1.



Proof Outline



Bounds on Sizes of Totally Symmetric Sets



Constructing free semigroups 
in nonpositive curvature

Thomas Ng 
joint w/ 
Radhika Gupta and Kasia Jankiewicz
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Setting: groups acting on NPC spaces
: a “nonpositively curved” space 

 

 (more generally any finite collection) 

: When does  contain an  subgroup?

X
a, b ∈ Isom(X)

Q ⟨a, b⟩ 𝔽2

: When such a subgroup does exist, can we construct a free basis 
whose word length is bounded in terms of the geometry of 

Q
X?

Not always!

a

b

a2

b
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If  is a CAT(0) cube complex then we can sometimes construct 
free semigroup bases with length bounded by .
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a b X

We want to 
replicate this for 
higher dimensional 
cube complexes
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Higher dimensions
Lemma (Gupta, Jankiewicz, Ng) 
If  and  acts without global fixed point on  then  
contains a hyperbolic isometry with length bounded in terms of .

dim(X) ≤ 3 ⟨a, b⟩ X ⟨a, b⟩
dim(X)

140.

Theorem (Gupta, Jankiewicz, Ng)  
If  acts on a finite product of 2-dimensional 
CAT(0) cube complexes  
then either  is virtually abelian,  
or  contains a short free semigroup basis.

G

G
G
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An application
Certain Artin groups act on 2D CAT(0) cube complexes 
(Deligne complex) where vertex stabilizers are Artin subgroups.   
Corollary (Gupta, Jankiewicz, Ng)  
If  is a 2D FC-type Artin group and   
then either  is virtually abelian, or 

 contains a short free semigroup basis.

A a, b ∈ A
⟨a, b⟩

⟨a, b⟩

Thanks!
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Dual simple braids generate the dual presentation

for Braidn = π1(Confn(C)).

1



dual braid complex: flag complex of Cayley graph

(T. Brady ’01, Brady-McCammond ’10)

(n = 3)
2



Theorem (T. Brady ’01): The dual braid complex is contractible

and the quotient by the pure braid group is a K(π,1).

Other K(π,1)’s for the pure braid group:

○ complement of complex braid arrangement in Cn

○ configuration space of n points in C

○ space of monic degree-n complex polynomials with

distinct ordered roots

Q: Can one of these be deformation retracted onto an embedded

copy of the quotient complex?
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Theorem (D-McCammond, in preparation)

1.

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

monic degree-n

complex polynomials,

distinct ordered roots

⎫⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎭

deformation
ÐÐÐÐÐÐ→
retraction

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

critical values

on unit circle and a

fixed root at zero

⎫⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎭

2. This subspace is isometric to the quotient of the dual braid

complex by the pure braid group.
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Equivalent deformation retraction (June 2019 preprint):

William Thurston, Hyungryul Baik, Yan Gao, John Hubbard,

Tan Lei, Kathryn Lindsey, Dylan Thurston.

5



Homomorphisms between braid groups

Kevin Kordek
joint with Lei Chen and Dan Margalit



Main Theorem (Chen–K–Margalit): A complete classification of all
homomorphisms Bn → Bm with n ≥ 5 and n ≤ m ≤ 2n.

Lin, Castel: Bn → Bm with n ≥ 6 and m ≤ n + 1.
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Theorem (Chen–K–Margalit, 2019)

For n ≥ 5 and n ≤ m ≤ 2n, any Bn → Bm is equivalent to exactly one
of

1. Trivial

2. Inclusion

3. Diagonal inclusion

4. Flip diagonal inclusion

5. k-twist cabling
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Theorem (Chen–K–Margalit, 2019)

Any B4 → B4 is equivalent to

1. Trivial

2. Identity

3. Exceptional B4 → B3 → B4

σ1, σ3 → σ1
σ2 → σ2

• There is only one way to resolve the quartic.



Theorem (Chen–K–Margalit, 2019)

Any B4 → B4 is equivalent to

1. Trivial

2. Identity

3. Exceptional B4 → B3 → B4

σ1, σ3 → σ1
σ2 → σ2

• There is only one way to resolve the quartic.



Theorem (Chen–K–Margalit, 2019)

Any B4 → B4 is equivalent to

1. Trivial

2. Identity

3. Exceptional B4 → B3 → B4

σ1, σ3 → σ1
σ2 → σ2

• There is only one way to resolve the quartic.



Theorem (Chen–K–Margalit, 2019)

Any B4 → B4 is equivalent to

1. Trivial

2. Identity

3. Exceptional B4 → B3 → B4

σ1, σ3 → σ1
σ2 → σ2

• There is only one way to resolve the quartic.



Theorem (Chen–K–Margalit, 2019)

Any B4 → B4 is equivalent to

1. Trivial

2. Identity

3. Exceptional B4 → B3 → B4

σ1, σ3 → σ1
σ2 → σ2

• There is only one way to resolve the quartic.



Theorem (K–Margalit, 2019)

For n ≥ 6 any non-trivial endomorphism of [Bn,Bn] extends to an
endomorphism of Bn.

• This answers a question of Lin from Shpilrain’s problem list.
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Classical invariants

• Thurston-Bennequin invariant
Contact framing - Seifert framing

• Rotation number
A winding number of a tangent field with respect to a trivialization of

• A knot is called Legendrian simple if its Legendrian isotopy classes are 
determined by Thurston-Bennequin and rotation numbers.
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Mountain range

Right-handed trefoil 𝑚52
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is known, is it possible to classify Legendrian knots of its cables?
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Legendrian cables

• Question: If the classification of Legendrian knots of a given knot type 
is known, is it possible to classify Legendrian knots of its cables?

• (Etnyre-Honda) If 𝐾 is Legendrian simple and uniformly thick, then 
𝐾𝑝,𝑞 is also Legendrian simple for any 𝑝, 𝑞

• (Tosun) If 𝐾 is Legendrian simple, then 𝐾𝑝,𝑞 is also Legendrian simple 
for  𝑞/𝑝 > ഥ𝑡𝑏 𝐾 + 1

• (Chakraborty) መ𝜃 𝑇1 = መ𝜃 𝑇2 if and only if መ𝜃 𝑇𝑝,𝑞
1 = መ𝜃 𝑇𝑝,𝑞
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Main result

Theorem (Chakraborty-Etnyre-M) 

• For 𝑞/𝑝 > ഥ𝑡𝑏 𝐾 + 1, 𝐾𝑝,𝑞 is Legendrian simple if and only if 𝐾 is 
Legendrian simple. 

• The mountain range of 𝐾𝑝,𝑞 is a (𝑝, 𝑞)-diamond of the mountain 
range of K.

𝑝 ⋅ 𝑟

𝑝𝑞 − |𝑡𝑝 − 𝑞|
𝑟

𝑡
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𝑚52 2,3 -cable of  𝑚52
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Idea of Proof

• Put a cable 𝐿𝑝,𝑞 on a standard neighborhood of 𝐿.

• Assume we have a common 𝐿𝑝,𝑞 on neighborhoods of 𝐿 and 𝐿′



Idea of Proof

• Put a cable 𝐿𝑝,𝑞 on a standard neighborhood of 𝐿.

• Assume we have a common 𝐿𝑝,𝑞 on neighborhoods of 𝐿 and 𝐿′

𝑁(𝐿)

𝑁(𝐿′)

𝐿𝑝,𝑞



Idea of Proof

• There is a smooth isotopy from 𝑁(𝐿) to 𝑁(𝐿’) fixing 𝐿𝑝,𝑞

• Keep track of the contact structure on 𝑁(𝐿) during the isotopy

𝑁(𝐿)

𝑁(𝐿′)

𝐿𝑝,𝑞



Thank you!
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Pixels are points of T1
pM

From ,  follow   v ∈ T1
pM γv : ℝ≥0 → M

When    intersects  at , stop.γv X q

Compute surface normal nq ⊥ TqX

Normal + lighting  pixel color⟶

Begin at a point p ∈ M

Find directions  to lights.{vi} ∈ T1
q𝔼3



ℍ3
FLY

http://www.stevejtrettel.site/VR/hyp/index.html


𝕊3
FLY

http://www.stevejtrettel.site/VR/S3Solar/index.html


𝖭𝗂𝗅
FLY

https://vimeo.com/376724329

