LIGHTNING TALKS I TECH TOPOLOGY CONFERENCE December 6, 2019

Braid Index of Knotted Surfaces

Sudipta Kolay

Georgia Tech

December 6, 2019

Closing up the ends of a braid gives a link, called a *closed braid*.

Question

Is every link a closed braid?

Closing up the ends of a braid gives a link, called a *closed braid*.

Alexander's Theorem (1923)

Every oriented link in S^3 is isotopic to a closed braid.

Closing up the ends of a braid gives a link, called a *closed braid*.

Alexander's Theorem (1923)

Every oriented link in S^3 is isotopic to a closed braid.

The *braid index* of a link L in \mathbb{R}^3 is the minimum number of strands required to express it as a closed braid, denoted Braid(L).

Theorem (Birman-Menasco 1990)

For knots K_1, K_2 in S^3 ,

 $\mathsf{Braid}(K_1 \# K_2) = \mathsf{Braid}(K_1) + \mathsf{Braid}(K_2) - 1.$

Theorem (Birman-Menasco 1990)

For knots K_1, K_2 in S^3 ,

 $\mathsf{Braid}(K_1 \# K_2) = \mathsf{Braid}(K_1) + \mathsf{Braid}(K_2) - 1.$

Theorem (Williams 1992)

For a non-trivial knot K in \mathbb{R}^3 , with pattern a closed n-braid

 $\mathsf{Braid}(P(K)) = n \cdot \mathsf{Braid}(K).$

Definition

An embedding $f: M^k \hookrightarrow S^k \times D^2 \subset S^{k+2}$ will be called a *closed* braid if $pr_1 \circ f: M^k \to S^k$ is a branched covering map.

Definition

An embedding $f: M^k \hookrightarrow S^k \times D^2 \subset S^{k+2}$ will be called a *closed* braid if $pr_1 \circ f: M^k \to S^k$ is a branched covering map.

Analogues of Alexander's Theorem

For $n \leq 5$, every codimension two embedded orientable submanifold in S^n is isotopic to a closed braid.

- smooth ribbon surfaces in \mathbb{R}^4 , Rudolph (1983).
- k = 2 Viro (1990), Kamada (1994).
- k = 3 in the *PL category*, K. (2017).

Braiding the standard torus

Braiding the standard torus

For non-trivial surface knots K_1, K_2 in S^4 ,

 $\operatorname{Braid}(K_1 \# K_2) \leq \operatorname{Braid}(K_1) + \operatorname{Braid}(K_2) - 2.$

For non-trivial surface knots K_1, K_2 in S^4 ,

 $\operatorname{Braid}(K_1 \# K_2) \leq \operatorname{Braid}(K_1) + \operatorname{Braid}(K_2) - 2.$

Sketch of an alternative proof (K.):

For non-trivial surface knots K_1, K_2 in S^4 ,

 $\mathsf{Braid}(K_1 \# K_2) \le \mathsf{Braid}(K_1) + \mathsf{Braid}(K_2) - 2.$

Question (Kamada-Satoh-Takabayashi 2006)

Are there 2-knots K_1, K_2 in S^4 so that:

 $\mathsf{Braid}(K_1 \# K_2) < \mathsf{Braid}(K_1) + \mathsf{Braid}(K_2) - 2?$

For non-trivial surface knots K_1, K_2 in S^4 ,

 $\mathsf{Braid}(K_1 \# K_2) \le \mathsf{Braid}(K_1) + \mathsf{Braid}(K_2) - 2.$

Question (Kamada-Satoh-Takabayashi 2006)

Are there 2-knots K_1, K_2 in S^4 so that:

 $\operatorname{Braid}(K_1 \# K_2) < \operatorname{Braid}(K_1) + \operatorname{Braid}(K_2) - 2?$

Yes (K.), for $K_1 = K_2$ being the 2-knot determined by

$$(\sigma_1, \sigma_1^{-1}, \sigma_2, \sigma_2^{-1}, w^{-1}\sigma_3 w, w^{-1}\sigma_3^{-1}w),$$
 where $w = \sigma_2^2 \sigma_1^2 \sigma_2^2 \sigma_3^2$

Theorem (K. 2019)

There cannot be constants C, D so that for any 2-knots K_1, K_2 , and any non-trivial 2-knot K, satisfies:

 $\operatorname{Braid}(K_1 \# K_2) \ge \operatorname{Braid}(K_1) + \operatorname{Braid}(K_2) - C,$

 $\operatorname{Braid}(P(K)) \ge \operatorname{deg}(P) \cdot \operatorname{Braid}(K) - D.$

Theorem (K. 2019)

There cannot be constants C, D so that for any 2-knots K_1, K_2 , and any non-trivial 2-knot K, satisfies:

 $\mathsf{Braid}(K_1 \# K_2) \ge \mathsf{Braid}(K_1) + \mathsf{Braid}(K_2) - C,$

 $\operatorname{Braid}(P(K)) \ge \operatorname{deg}(P) \cdot \operatorname{Braid}(K) - D.$

Thank You!

Ribbon homology cobordisms

Aliakbar Daemi¹ Tye Lidman² David Shea Vela-Vick³ *C.-M. Michael Wong³

> ¹Department of Mathematics and Statistics Washington University in St. Louis

> > ²Department of Mathematics North Carolina State University

³Department of Mathematics Louisiana State University

Tech Topology Conference 2019

◆□> <@> < E> < E> < E</p>

990

• For compact 3-manifolds Y_- and Y_+ (with same ∂), a *cobordism*

$$W \colon Y_- \to Y_+$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- is made up of 1-, 2-, and 3-handles
- Ribbon: does not have 3-handles
- Natural examples: Stein cobordisms between contact 3-manifolds

• For compact 3-manifolds Y_{-} and Y_{+} (with same ∂), a *cobordism*

$$W \colon Y_- \to Y_+$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

is made up of 1-, 2-, and 3-handles

- Ribbon: does not have 3-handles
- Natural examples: Stein cobordisms between contact 3-manifolds

• For compact 3-manifolds Y_{-} and Y_{+} (with same ∂), a *cobordism*

$$W \colon Y_- \to Y_+$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

is made up of 1-, 2-, and 3-handles

- *Ribbon*: does not have 3-handles
- Natural examples: Stein cobordisms between contact 3-manifolds

Observation

If $C: K_{-} \rightarrow K_{+}$ is a ribbon concordance, then the exterior

- $\mathrel{\hspace{0.1cm}\circ\hspace{0.1cm}} Y_{\pm}:=S^{3}\setminus K_{\pm}$
- \circ $W := (S^3 \times [0, 1]) \setminus C$

gives a ribbon cobordism $W: Y_{-} \rightarrow Y_{+}$

• Here, homology cobordism means that the maps

 $H_*(Y_-) \to H_*(W) \leftarrow H_*(Y_+)$

induced by inclusion are isomorphisms.

• W, like C, has no topology in interior (detected by homology)

Observation

If $C \colon K_{-} \to K_{+}$ is a ribbon concordance, then the exterior

- $Y_{\pm} := S^3 \setminus K_{\pm}$
- $\bullet \ W := (S^3 \times [0,1]) \setminus C$

gives a ribbon cobordism $W: Y_-
ightarrow Y_+.$

• Here, homology cobordism means that the maps $H_{-}(V_{-}) \rightarrow H_{-}(W) \leftarrow H_{-}(V_{-})$

induced by inclusion are isomorphisms.

• W, like C, has no topology in interior (detected by homology)

Observation

If $C \colon K_{-} \to K_{+}$ is a ribbon concordance, then the exterior

- $Y_{\pm} := S^3 \setminus K_{\pm}$
- $\bullet \ W := (S^3 \times [0,1]) \setminus C$

gives a ribbon cobordism $W\colon Y_{\pm} o Y_{\pm}$

• Here, homology cobordism means that the maps

 $H_*(Y_-) \to H_*(W) \leftarrow H_*(Y_+)$

induced by inclusion are isomorphisms.

• W, like C, has no topology in interior (detected by homology)

Observation

If $C \colon K_{-} \to K_{+}$ is a ribbon concordance, then the exterior

- $Y_{\pm} := S^3 \setminus K_{\pm}$
- $\bullet \ W:=(S^3\times [0,1])\setminus C$

gives a ribbon cobordism $W: Y_- \to Y_+$.

Here, homology cobordism means that the maps

$$H_*(Y_-) \to H_*(W) \leftarrow H_*(Y_+)$$

induced by inclusion are isomorphisms.

• W, like C, has no topology in interior (detected by homology)

Observation

If $C \colon K_{-} \to K_{+}$ is a ribbon concordance, then the exterior

- $Y_{\pm} := S^3 \setminus K_{\pm}$
- $\bullet \ W:=(S^3\times [0,1])\setminus C$

gives a ribbon homology cobordism $W: Y_- \to Y_+$.

• Here, homology cobordism means that the maps

$$H_*(Y_-) \to H_*(W) \leftarrow H_*(Y_+)$$

induced by inclusion are isomorphisms.

W, like C, has no topology in interior (detected by homology)

Observation

If $C \colon K_{-} \to K_{+}$ is a ribbon concordance, then the exterior

•
$$Y_{\pm} := S^3 \setminus K_{\pm}$$

•
$$W := (S^3 \times [0,1]) \setminus C$$

gives a ribbon homology cobordism $W \colon Y_{-} \to Y_{+}$.

• Here, homology cobordism means that the maps

$$H_*(Y_-) \to H_*(W) \leftarrow H_*(Y_+)$$

induced by inclusion are isomorphisms.

• W, like C, has no topology in interior (detected by homology)

Fundamental groups

•
$$Y_{\pm} = S^3 \setminus K_{\pm}$$
, $W = (S^3 \times [0, 1]) \setminus C$

Theorem (Gordon 1981) If $C: K_{-} \to K_{+}$ is a ribbon concordance, then

$$\pi_1(Y_-) \to \pi_1(W) \leftarrow \pi_1(Y_+).$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Proof.

Uses the residual finiteness of knot groups $\pi_1(Y_{\pm})$.

Fundamental groups

•
$$Y_{\pm} = S^3 \setminus K_{\pm}$$
, $W = (S^3 \times [0, 1]) \setminus C$

Theorem (Gordon 1981) If $C: K_{-} \to K_{+}$ is a ribbon concordance, then

$$\pi_1(Y_-) \hookrightarrow \pi_1(W) \twoheadleftarrow \pi_1(Y_+).$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Proof.

Uses the residual finiteness of knot groups $\pi_1(Y_{\pm})$.

Fundamental groups

•
$$Y_{\pm} = S^3 \setminus K_{\pm}$$
, $W = (S^3 \times [0, 1]) \setminus C$

Theorem (Gordon 1981) If $C: K_{-} \to K_{+}$ is a ribbon concordance, then

$$\pi_1(Y_-) \hookrightarrow \pi_1(W) \twoheadleftarrow \pi_1(Y_+).$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Proof.

Uses the residual finiteness of knot groups $\pi_1(Y_{\pm})$.

Geometrization (Perelman 2006) implies residual finiteness for closed 3-manifold groups.

Theorem (Gordon 1981) If $C: K_{-} \to K_{+}$ is a ribbon concordance, then

$$\pi_1(Y_-) \hookrightarrow \pi_1(W) \twoheadleftarrow \pi_1(Y_+).$$

- Roughly: $\pi_1(Y_-)$ is "no bigger" than $\pi_1(Y_+)$
- How can we use this?

Geometrization (Perelman 2006) implies residual finiteness for closed 3-manifold groups.

Theorem (Gordon 1981) If $C: K_{-} \to K_{+}$ is a ribbon concordance, then

$$\pi_1(Y_-) \hookrightarrow \pi_1(W) \twoheadleftarrow \pi_1(Y_+).$$

- Roughly: $\pi_1(Y_-)$ is "no bigger" than $\pi_1(Y_+)$
- How can we use this?

Geometrization (Perelman 2006) implies residual finiteness for closed 3-manifold groups.

Theorem (Gordon 1981) If $W: Y_- \to Y_+$ is a ribbon homology cobordism, then

$$\pi_1(Y_-) \hookrightarrow \pi_1(W) \twoheadleftarrow \pi_1(Y_+).$$

- Roughly: $\pi_1(Y_-)$ is "no bigger" than $\pi_1(Y_+)$
- How can we use this?

Geometrization (Perelman 2006) implies residual finiteness for closed 3-manifold groups.

Theorem (Gordon 1981) If $W: Y_- \to Y_+$ is a ribbon homology cobordism, then

$$\pi_1(Y_-) \hookrightarrow \pi_1(W) \twoheadleftarrow \pi_1(Y_+).$$

- Roughly: $\pi_1(Y_-)$ is "no bigger" than $\pi_1(Y_+)$
- How can we use this?

Geometrization (Perelman 2006) implies residual finiteness for closed 3-manifold groups.

Theorem (Gordon 1981) If $W: Y_- \to Y_+$ is a ribbon homology cobordism, then

$$\pi_1(Y_-) \hookrightarrow \pi_1(W) \twoheadleftarrow \pi_1(Y_+).$$

- Roughly: $\pi_1(Y_-)$ is "no bigger" than $\pi_1(Y_+)$
- How can we use this?

 $\pi_1(Y)$ determines the Thurston geometry of Y (if it has one).

Theorem (Daemi–Lidman–Vela-Vick–W.)

If $W: Y_- \to Y_+$ is a ribbon homology cobordism, then

• The Thurston geometries of Y₋ and Y₊ satisfy a hierarchy.
Observation

 $\pi_1(Y)$ determines the Thurston geometry of Y (if it has one).

Theorem (Daemi–Lidman–Vela-Vick–W.)

If $W: Y_- \to Y_+$ is a ribbon homology cobordism, then

• The Thurston geometries of Y_{-} and Y_{+} satisfy a hierarchy.

Ribbon homology cobordisms and Thurston geometries

900

If $W \colon Y_{-} \to Y_{+}$ is a ribbon homology cobordism, then

• The Thurston geometries of Y_{-} and Y_{+} satisfy a hierarchy.

• How else can we squeeze information from π_1 ?

• Idea: Representations of $\pi_1(Y_\pm)$

If $W \colon Y_{-} \to Y_{+}$ is a ribbon homology cobordism, then

• The Thurston geometries of Y_{-} and Y_{+} satisfy a hierarchy.

- How else can we squeeze information from π_1 ?
- Idea: Representations of $\pi_1(Y_{\pm})$

If $W \colon Y_{-} \to Y_{+}$ is a ribbon homology cobordism, then

- The Thurston geometries of Y_{-} and Y_{+} satisfy a hierarchy.
- The dimension of the *G*-representation variety of *Y*₋ is at most that of *Y*₊, for a compact Lie group *G*.
- Any specific G? For example, SU(2)
- Next idea: The SU(2)-representations of $\pi_1(Y)$ are related to the instanton Floer homology $\mathrm{I}^\sharp(Y)$

If $W \colon Y_{-} \to Y_{+}$ is a ribbon homology cobordism, then

- The Thurston geometries of Y_{-} and Y_{+} satisfy a hierarchy.
- The dimension of the *G*-representation variety of *Y*₋ is at most that of *Y*₊, for a compact Lie group *G*.
- Any specific G? For example, SU(2)
- Next idea: The SU(2)-representations of $\pi_1(Y)$ are related to the instanton Floer homology $I^{\sharp}(Y)$

If $W \colon Y_{-} \to Y_{+}$ is a ribbon homology cobordism, then

- The Thurston geometries of Y_{-} and Y_{+} satisfy a hierarchy.
- The dimension of the *G*-representation variety of *Y*₋ is at most that of *Y*₊, for a compact Lie group *G*.
- Any specific G? For example, SU(2)
- Next idea: The SU(2)-representations of $\pi_1(Y)$ are related to the instanton Floer homology $I^{\sharp}(Y)$

If $W \colon Y_{-} \to Y_{+}$ is a ribbon homology cobordism, then

- The Thurston geometries of Y_{-} and Y_{+} satisfy a hierarchy.
- The dimension of the *G*-representation variety of *Y*₋ is at most that of *Y*₊, for a compact Lie group *G*.
- Any specific G? For example, SU(2)
- Next idea: The SU(2)-representations of $\pi_1(Y)$ are related to the instanton Floer homology $I^{\sharp}(Y)$

If $W \colon Y_{-} \to Y_{+}$ is a ribbon homology cobordism, then

- The Thurston geometries of Y_{-} and Y_{+} satisfy a hierarchy.
- The dimension of the *G*-representation variety of *Y*₋ is at most that of *Y*₊.
- $I^{\sharp}(W) \colon I^{\sharp}(Y_{-}) \to I^{\sharp}(Y_{+})$ is injective.

• Note: Conjecturally, $I^{\sharp}(Y) \cong \widehat{HF}(Y)$ (Heegaard Floer)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Next idea: Similarly for Heegaard Floer homology!

If $W \colon Y_{-} \to Y_{+}$ is a ribbon homology cobordism, then

- The Thurston geometries of Y_{-} and Y_{+} satisfy a hierarchy.
- The dimension of the *G*-representation variety of *Y*₋ is at most that of *Y*₊.
- $I^{\sharp}(W) \colon I^{\sharp}(Y_{-}) \to I^{\sharp}(Y_{+})$ is injective.
- Note: Conjecturally, $I^{\sharp}(Y) \cong \widehat{HF}(Y)$ (Heegaard Floer)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Next idea: Similarly for Heegaard Floer homology!

If $W \colon Y_{-} \to Y_{+}$ is a ribbon homology cobordism, then

- The Thurston geometries of Y_{-} and Y_{+} satisfy a hierarchy.
- The dimension of the *G*-representation variety of *Y*₋ is at most that of *Y*₊.
- $I^{\sharp}(W) \colon I^{\sharp}(Y_{-}) \to I^{\sharp}(Y_{+})$ is injective.
- Note: Conjecturally, $I^{\sharp}(Y) \cong \widehat{HF}(Y)$ (Heegaard Floer)

• Next idea: Similarly for Heegaard Floer homology!

If $W \colon Y_- \to Y_+$ is a ribbon homology cobordism, then

- The Thurston geometries of Y_{-} and Y_{+} satisfy a hierarchy.
- The dimension of the *G*-representation variety of *Y*₋ is at most that of *Y*₊.

A D N A 目 N A E N A E N A C N A

- $I^{\sharp}(W) \colon I^{\sharp}(Y_{-}) \to I^{\sharp}(Y_{+})$ is injective.
- $\widehat{F}_W \colon \widehat{\mathrm{HF}}(Y_-) \to \widehat{\mathrm{HF}}(Y_+)$ is injective.

Sketch of proof for Floer homologies

• Doubling trick:

 $\begin{array}{lll} \text{Attaching } S^1 \times D^3 & \rightsquigarrow & X := (Y_- \times [0,1]) \ \sharp \left(S^1 \times S^3\right) \\ \text{Attaching } D^2 \times S^2 & \rightsquigarrow & D(W) := W \cup_{Y_+} (-W) \end{array}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─の�?

Suppose that Y is a Seifert fibered homology sphere, K is a null-homotopic knot in Y, and $Y_0(K) \cong N \not\equiv (S^1 \times S^2)$. Then $N \cong Y$.

Proof.

Idea: A natural ribbon homology cobordism from N to Y.

Suppose that Y is a Seifert fibered homology sphere, K is a null-homotopic knot in Y, and $Y_0(K) \cong N \not\equiv (S^1 \times S^2)$. Then $N \cong Y$.

Proof.

Idea: A natural ribbon homology cobordism from N to Y.

Thank you!

 $\begin{array}{lll} \text{Attaching } S^1 \times D^3 & \rightsquigarrow & X := (Y_- \times [0,1]) \ \sharp \ (S^1 \times S^3) \\ \text{Attaching } D^2 \times S^2 & \rightsquigarrow & D(W) := W \cup_{Y_+} (-W) \end{array}$

Finite Quotients of Braid Groups

Lily Li and Caleb Partin Joint Work with Alice Chudnovsky and Kevin Kordek

Main Result

Finite Quotients of Braid Groups

Let G be a finite group and let $n \ge 5$. If $B_n \to G$ is not a cyclic homomorphism, then $|G| \ge 2^{\lfloor \frac{n}{2} \rfloor - 1} (\lfloor \frac{n}{2} \rfloor)!$ **Definition.** Totally Symmetric Set (Kordek, Margalit) A totally symmetric set X is a subset of a group G which satisfies two properties:

- All elements of the subset commute
- Any permutation in X can be achieved by conjugation in G.

Definition. Totally Symmetric Set (Kordek, Margalit) A totally symmetric set X is a subset of a group G which satisfies two properties:

- All elements of the subset commute
- Any permutation in X can be achieved by conjugation in G.

Fundamental Lemma of Totally Symmetric Sets

The image of a totally symmetric set under a homomorphism is a totally symmetric set.

Fundamental Lemma of Totally Sympton Totally

III

ic set

The image of a totally symmetry

a Lomomorphism is a totally

Fundamental Lemma of Totally Symmetric Sets

The image of a totally symmetric set of size n under a homomorphism is a totally symmetric set of size n or 1.

Proof Outline

$1 \to K \to \Gamma_S \to S_n \to 1$

Bounds on Sizes of Totally Symmetric Sets

G	S(G)
$G \times H$	$\max(S(G), S(H))$
Ab	1
Odd	1
Solv	≤ 4

Constructing free semigroups in nonpositive curvature

Thomas Ng joint w/ Radhika Gupta and Kasia Jankiewicz

X: a "nonpositively curved" space

 $a, b \in Isom(X)$ (more generally any finite collection)

X: a "nonpositively curved" space

 $a, b \in Isom(X)$ (more generally any finite collection)

 \underline{Q} : When does $\langle a, b \rangle$ contain an \mathbb{F}_2 subgroup?

X: a "nonpositively curved" space

 $a, b \in Isom(X)$ (more generally any finite collection)

Q: When does $\langle a, b \rangle$ contain an \mathbb{F}_2 subgroup?

X: a "nonpositively curved" space

 $a, b \in Isom(X)$ (more generally any finite collection)

Q: When does $\langle a, b \rangle$ contain an \mathbb{F}_2 subgroup?

X: a "nonpositively curved" space

 $a, b \in Isom(X)$ (more generally any finite collection)

Q: When does $\langle a, b \rangle$ contain an \mathbb{F}_2 subgroup?

X: a "nonpositively curved" space

 $a, b \in Isom(X)$ (more generally any finite collection)

Q: When does $\langle a, b \rangle$ contain an \mathbb{F}_2 subgroup?

Q: When such a subgroup does exist, can we construct a free basis whose word length is bounded in terms of the geometry of X?

Main result (Gupta, Jankiewicz, Ng) If X is a CAT(0) cube complex then we can sometimes construct free semigroup bases with length bounded by dim(X).

Main result (Gupta, Jankiewicz, Ng) If X is a CAT(0) cube complex then we can sometimes construct free semigroup bases with length bounded by dim(X).

Example:

Let X be a tree and $\langle a, b \rangle$ act without global fixed point on X.

Main result (Gupta, Jankiewicz, Ng) If X is a CAT(0) cube complex then we can sometimes construct free semigroup bases with length bounded by dim(X).

Example:

Let X be a tree and $\langle a, b \rangle$ act without global fixed point on X. Hardest case: both a and b are elliptic(have fixed points on X)

Main result (Gupta, Jankiewicz, Ng) If X is a CAT(0) cube complex then we can sometimes construct free semigroup bases with length bounded by dim(X).

Example:

Let X be a tree and $\langle a, b \rangle$ act without global fixed point on X. Hardest case: both a and b are elliptic(have fixed points on X)

ab is a hyperbolic isometry
Goal and warm-up

Main result (Gupta, Jankiewicz, Ng) If X is a CAT(0) cube complex then we can sometimes construct free semigroup bases with length bounded by dim(X).

Example:

Let X be a tree and $\langle a, b \rangle$ act without global fixed point on X. Hardest case: both a and b are elliptic(have fixed points on X)

Either $a, b \in Stab(Axis(ab))$ $\Rightarrow \langle a, b \rangle$ is virtually cyclic,

Goal and warm-up

Main result (Gupta, Jankiewicz, Ng) If X is a CAT(0) cube complex then we can sometimes construct free semigroup bases with length bounded by dim(X).

Example:

Let X be a tree and $\langle a, b \rangle$ act without global fixed point on X. Hardest case: both a and b are elliptic(have fixed points on X)

Either $a, b \in Stab(Axis(ab))$ $\Rightarrow \langle a, b \rangle$ is virtually cyclic, or one of a or b move Axis(ab) off of itself \Rightarrow short free semigroup basis of length 4.

Goal and warm-up

Main result (Gupta, Jankiewicz, Ng) If X is a CAT(0) cube complex then we can sometimes construct free semigroup bases with length bounded by dim(X).

Example:

Let X be a tree and $\langle a, b \rangle$ act without global fixed point on X. Hardest case: both a and b are elliptic(have fixed points on X)

Either $a, b \in Stab(Axis(ab))$ $\Rightarrow \langle a, b \rangle$ is virtually cyclic, or one of a or b move Axis(ab) off of itself \Rightarrow short free semigroup basis of length 4.

We want to replicate this for higher dimensional cube complexes

Lemma (Gupta, Jankiewicz, Ng) If $dim(X) \le 3$ and $\langle a, b \rangle$ acts without global fixed point on X then $\langle a, b \rangle$ contains a hyperbolic isometry with length bounded in terms of dim(X).

Lemma (Gupta, Jankiewicz, Ng) If $dim(X) \le 3$ and $\langle a, b \rangle$ acts without global fixed point on X then $\langle a, b \rangle$ contains a hyperbolic isometry with length bounded in terms of dim(X).

Theorem (Kar, Sageev) If $dim(X) \le 2$ and $a, b \in Isom(X)$ are both hyperbolic isometries then either $\langle a, b \rangle$ is virtually abelian, or $\langle a, b \rangle$ contains a free semigroup basis of length ≤ 10 .

Lemma (Gupta, Jankiewicz, Ng) If $dim(X) \le 3$ and $\langle a, b \rangle$ acts without global fixed point on X then $\langle a, b \rangle$ contains a hyperbolic isometry with length bounded in terms of dim(X).

Theorem (Kar, Sageev I Gupta, Jankiewicz, Ng) If $dim(X) \leq 2$ and $a, b \in Isom(X)$ are both hyperbolic isometries then either $\langle a, b \rangle$ is virtually abelian, or $\langle a, b \rangle$ contains a free semigroup basis of length $\leq 10^{-140}$.

Lemma (Gupta, Jankiewicz, Ng) If $dim(X) \le 3$ and $\langle a, b \rangle$ acts without global fixed point on X then $\langle a, b \rangle$ contains a hyperbolic isometry with length bounded in terms of dim(X).

Theorem (Kar, Sageev I Gupta, Jankiewicz, Ng) If $dim(X) \leq 2$ and $a, b \in Isom(X)$ are both hyperbolic isometries then either $\langle a, b \rangle$ is virtually abelian, or $\langle a, b \rangle$ contains a free semigroup basis of length $\leq 10^{-140}$.

Theorem (Gupta, Jankiewicz, Ng) If G acts on a finite product of 2-dimensional CAT(0) cube complexes then either G is virtually abelian, or G contains a short free semigroup basis.

An application

Certain Artin groups act on 2D CAT(0) cube complexes (Deligne complex) where vertex stabilizers are Artin subgroups.

An application

Certain Artin groups act on 2D CAT(0) cube complexes (Deligne complex) where vertex stabilizers are Artin subgroups.

Corollary (Gupta, Jankiewicz, Ng) If A is a 2D FC-type Artin group and $a, b \in A$ then either $\langle a, b \rangle$ is virtually abelian, or $\langle a, b \rangle$ contains a short free semigroup basis.

An application

Certain Artin groups act on 2D CAT(0) cube complexes (Deligne complex) where vertex stabilizers are Artin subgroups.

Corollary (Gupta, Jankiewicz, Ng) If A is a 2D FC-type Artin group and $a, b \in A$ then either $\langle a, b \rangle$ is virtually abelian, or $\langle a, b \rangle$ contains a short free semigroup basis.

Thanks!

Intrinsic Combinatorics for the Space of Generic Complex Polynomials

Michael Dougherty

December 6, 2019

Colby College

Dual simple braids generate the dual presentation for $BRAID_n = \pi_1(CONF_n(\mathbb{C})).$ dual braid complex: flag complex of Cayley graph (T. Brady '01, Brady-McCammond '10)

Theorem (T. Brady '01): The dual braid complex is contractible and the quotient by the pure braid group is a $K(\pi, 1)$.

Theorem (T. Brady '01): The dual braid complex is contractible and the quotient by the pure braid group is a $K(\pi, 1)$.

Other $K(\pi, 1)$'s for the pure braid group:

- $\circ~$ complement of complex braid arrangement in \mathbb{C}^n
- $\circ\,$ configuration space of n points in $\mathbb C$
- space of monic degree-*n* complex polynomials with distinct ordered roots

Theorem (T. Brady '01): The dual braid complex is contractible and the quotient by the pure braid group is a $K(\pi, 1)$.

Other $K(\pi, 1)$'s for the pure braid group:

- $\circ~$ complement of complex braid arrangement in \mathbb{C}^n
- $\circ\,$ configuration space of n points in $\mathbb C$
- space of monic degree-*n* complex polynomials with distinct ordered roots

Q: Can one of these be deformation retracted onto an embedded copy of the quotient complex?

Theorem (D-McCammond, in preparation)

1. $\begin{cases} \text{monic degree-}n \\ \text{complex polynomials,} \\ \text{distinct ordered roots} \end{cases} \xrightarrow[\text{retraction}]{\text{deformation}} \begin{cases} \text{critical values} \\ \text{on unit circle and a} \\ \text{fixed root at zero} \end{cases}$

Theorem (D-McCammond, in preparation)

1. $\left\{\begin{array}{c} \text{monic degree-}n\\ \text{complex polynomials,}\\ \text{distinct ordered roots} \end{array}\right\} \xrightarrow[\text{retraction}]{\text{deformation}} \left\{\begin{array}{c} \text{critical values}\\ \text{on unit circle and a}\\ \text{fixed root at zero} \end{array}\right\}$

2. This subspace is isometric to the quotient of the dual braid complex by the pure braid group.

Equivalent deformation retraction (June 2019 preprint):

William Thurston, Hyungryul Baik, Yan Gao, John Hubbard, Tan Lei, Kathryn Lindsey, Dylan Thurston.

Homomorphisms between braid groups

Kevin Kordek joint with Lei Chen and Dan Margalit Main Theorem (Chen–K–Margalit): A complete classification of all homomorphisms $B_n \rightarrow B_m$ with $n \ge 5$ and $n \le m \le 2n$.

Main Theorem (Chen–K–Margalit): A complete classification of all homomorphisms $B_n \rightarrow B_m$ with $n \ge 5$ and $n \le m \le 2n$.

Lin, Castel: $B_n \rightarrow B_m$ with $n \ge 6$ and $m \le n+1$.

For $n \geq 5$ and $n \leq m \leq 2n,$ any $\mathsf{B}_n \to \mathsf{B}_m$ is equivalent to exactly one of

1. Trivial

- 1. Trivial
- 2. Inclusion

- 1. Trivial
- 2. Inclusion
- 3. Diagonal inclusion

- 1. Trivial
- 2. Inclusion
- 3. Diagonal inclusion
- 4. Flip diagonal inclusion

- 1. Trivial
- 2. Inclusion
- 3. Diagonal inclusion
- 4. Flip diagonal inclusion
- 5. k-twist cabling

Theorem (Chen–K–Margalit, 2019) Any $B_4 \rightarrow B_4$ is equivalent to $\begin{array}{l} \mbox{Theorem (Chen-K-Margalit, 2019)} \\ \mbox{Any } B_4 \rightarrow B_4 \mbox{ is equivalent to} \end{array}$

1. Trivial

 $\begin{array}{l} \mbox{Theorem (Chen-K-Margalit, 2019)} \\ \mbox{Any } B_4 \rightarrow B_4 \mbox{ is equivalent to} \end{array}$

- 1. Trivial
- 2. Identity

Theorem (Chen–K–Margalit, 2019) Any $B_4 \rightarrow B_4$ is equivalent to

- 1. Trivial
- 2. Identity
- 3. Exceptional $B_4 \rightarrow B_3 \rightarrow B_4$

 $\sigma_1, \sigma_3 \to \sigma_1 \\ \sigma_2 \to \sigma_2$

Theorem (Chen–K–Margalit, 2019) Any $B_4 \rightarrow B_4$ is equivalent to

- 1. Trivial
- 2. Identity
- 3. Exceptional $B_4 \rightarrow B_3 \rightarrow B_4$ $\sigma_1, \sigma_3 \rightarrow \sigma_1$ $\sigma_2 \rightarrow \sigma_2$

• There is only one way to resolve the quartic.

For $n \ge 6$ any non-trivial endomorphism of $[B_n, B_n]$ extends to an endomorphism of B_n .

For $n \ge 6$ any non-trivial endomorphism of $[B_n, B_n]$ extends to an endomorphism of B_n .

• This answers a question of Lin from Shpilrain's problem list.

Cabling Legendrian knots

Hyunki Min

with Apratim Chakraborty and John Etnyre

Tech Topology Conference December 6, 2019
Legendrian knots in $(\mathbb{R}^3, \xi_{std})$

• A standard contact structure on \mathbb{R}^3 is a plane field $\xi = \ker dz - ydx$

Legendrian knots in $(\mathbb{R}^3, \xi_{std})$

• A standard contact structure on \mathbb{R}^3 is a plane field

 $\xi = \ker dz - ydx$

• A Legendrian knot is a knot tangent to the contact structure.

Legendrian knots in $(\mathbb{R}^3, \xi_{std})$

• A standard contact structure on \mathbb{R}^3 is a plane field

$$\xi = \ker dz - ydx$$

• A Legendrian knot is a knot tangent to the contact structure.

Classical invariants

• Thurston-Bennequin invariant Contact framing - Seifert framing

Classical invariants

- Thurston-Bennequin invariant Contact framing - Seifert framing
- Rotation number

A winding number of a tangent field with respect to a trivialization of $\xi|_{\Sigma}$

Classical invariants

- Thurston-Bennequin invariant Contact framing - Seifert framing
- Rotation number A winding number of a tangent field with respect to a trivialization of $\xi|_{\Sigma}$
- A knot is called Legendrian simple if its Legendrian isotopy classes are determined by Thurston-Bennequin and rotation numbers.

Mountain range

Right-handed trefoil

Mountain range

Right-handed trefoil

 $m5_2$

• Question: If the classification of Legendrian knots of a given knot type is known, is it possible to classify Legendrian knots of its cables?

- Question: If the classification of Legendrian knots of a given knot type is known, is it possible to classify Legendrian knots of its cables?
- (Etnyre-Honda) If K is Legendrian simple and uniformly thick, then $K_{p,q}$ is also Legendrian simple for any (p,q)

- Question: If the classification of Legendrian knots of a given knot type is known, is it possible to classify Legendrian knots of its cables?
- (Etnyre-Honda) If K is Legendrian simple and uniformly thick, then $K_{p,q}$ is also Legendrian simple for any (p,q)
- (Tosun) If K is Legendrian simple, then $K_{p,q}$ is also Legendrian simple for $q/p > t\overline{b}(K) + 1$

- Question: If the classification of Legendrian knots of a given knot type is known, is it possible to classify Legendrian knots of its cables?
- (Etnyre-Honda) If K is Legendrian simple and uniformly thick, then $K_{p,q}$ is also Legendrian simple for any (p,q)
- (Tosun) If K is Legendrian simple, then $K_{p,q}$ is also Legendrian simple for $q/p > t\overline{b}(K) + 1$
- (Chakraborty) $\hat{\theta}(T^1) = \hat{\theta}(T^2)$ if and only if $\hat{\theta}(T^1_{p,q}) = \hat{\theta}(T^2_{p,q})$

Main result

Theorem (Chakraborty-Etnyre-M)

• For $q/p > t\overline{b}(K) + 1$, $K_{p,q}$ is Legendrian simple if and only if K is Legendrian simple.

Main result

Theorem (Chakraborty-Etnyre-M)

- For $q/p > t\overline{b}(K) + 1$, $K_{p,q}$ is Legendrian simple if and only if K is Legendrian simple.
- The mountain range of $K_{p,q}$ is a (p,q)-diamond of the mountain range of K.

Main result

Theorem (Chakraborty-Etnyre-M)

- For $q/p > t\overline{b}(K) + 1$, $K_{p,q}$ is Legendrian simple if and only if K is Legendrian simple.
- The mountain range of $K_{p,q}$ is a (p,q)-diamond of the mountain range of K.

Examples

 $m5_2$

Examples

 $m5_2$

(2,3)-cable of $m5_2$

Idea of Proof

- Put a cable $L_{p,q}$ on a standard neighborhood of L.
- Assume we have a common $L_{p,q}$ on neighborhoods of L and L'

Idea of Proof

- Put a cable $L_{p,q}$ on a standard neighborhood of L.
- Assume we have a common $L_{p,q}$ on neighborhoods of L and L'

Idea of Proof

- There is a smooth isotopy from N(L) to N(L') fixing $L_{p,q}$
- Keep track of the contact structure on N(L) during the isotopy

Thank you!

STEVE TRETTEL
ICERM

RAYMARCHING Homogeneous geometries

JOINT WITH

Henry Segerman Sabetta Matsumoto Remi Coulon Brian Day

WHAT DOES IT MEAN TO SEE

Begin at a point $p \in M$ **Pixels are points of** $T_n^1 M$ From $v \in T_p^1 M$, follow $\gamma_v \colon \mathbb{R}_{>0} \to M$ When γ_{v} intersects X at q, stop. Find directions $\{v_i\} \in T_a^1 \mathbb{E}^3$ to lights. **Compute surface normal** $n_a \perp T_a X$ Normal + lighting —> pixel color

