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homomorphisms using finite subgroups
Constraining mapping class group

Justin Lanier, Georgia Tech
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Conjecture (Mirzakhani) 

MCG homomorphisms

finite image
“induced by

some manipulation
of surfaces”
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Theorem (Aramayona–Souto)

For �  and �  , every nontrivial 
homomorphism Mod � � Mod�
is induced by an embedding.

g ≥ 6 g′� < 2g − 1
(Sg,n,b)→ (Sg′�,n,′�,b′�)

So for closed surfaces, isomorphism or trivial.



Proof (Aramayona–Souto)

Dehn twists
go to

roots of
multitwists

Dehn twists
go to

Dehn twists

A chain
of curves, 

and an
embedding

(Bridson)







🤩



Proof (Chen–L)

homomorphism
trivial

torsion dies
 �

 homomorphism 
trivial

⟹ + torsion dies
 

�⟹



Proof (Chen–L)

homomorphism
trivial

torsion dies
 �

 homomorphism 
trivial

⟹ + torsion dies
 

�⟹

Theorem (L–Margalit)

For g � , every nontrivial periodic mapping
class that is not a hyperelliptic involution 
normally generates Mod(Sg).

≥ 3
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Theorem (May–Zimmerman)

For g  and odd, Mod(Sg) contains the first 
appearance of �

≥ 3
C4 × Dg

For g  and even, Mod(Sg) contains the first
appearance of �  

≥ 2
DCg
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Lemma (Chen–L)

These first appearances are the only appearances
in the specified linear range.
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Slit Tori

Genus 2 surface

2 cone type singularities of angle 4π



Translation structure

Embedding into complex plane endows the surface with the holomorphic 
differential 𝑑𝑧.

This allows us to measure lengths and gives a sense of direction.



Holonomy vectors

Geodesics starting and ending at a cone type singularity are called 
saddle connections. The vector representing it is called the holonomy 
vector.

𝑽𝜸 ∶= න
𝜸

𝒅𝒛 =
𝟒
𝟏



How random are the holonomy vectors?

Random = gap distribution of slopes

Let 𝛬𝜔 denote the set of holonomy vectors

𝑺𝒍𝒐𝒑𝒆𝒔𝑹 𝜦𝝎 = 𝒔𝟎 = 𝟎 < 𝒔𝟏 < ⋯ < 𝒔𝑵(𝑹)

෫𝑮𝒂𝒑𝒔𝑹 𝜦𝝎 = 𝒔𝒊 − 𝒔𝒊−𝟏| 𝒊 = 𝟏,… ,𝑵(𝑹)



Gap distribution

Since 𝑁 𝑅 ~ 𝜋 𝑅2 it is natural to consider the normalized gaps 

𝑮𝒂𝒑𝒔𝑹 𝜦𝝎 = 𝑹𝟐(𝒔𝒊 − 𝒔𝒊−𝟏)| 𝒊 = 𝟏,… ,𝑵(𝑹)

The gap distribution is given by the limit

𝒍𝒊𝒎
𝑹→∞

𝑮𝒂𝒑𝒔 𝜦𝝎 ∩ 𝒄, 𝒅

𝑹𝟐

What can we say about this limit?



There exists a density function 𝑓 so 
that

𝒍𝒊𝒎
𝑹→∞

𝑮𝒂𝒑𝒔𝑹 𝜦𝝎 ∩ 𝒄,𝒅

𝑹𝟐
𝒄 =

𝒅
𝒇 𝒙 𝒅𝒙

Moreover,  𝑓 so that has a quadratic 
tail and support at zero.

Quadratic tail: There is a constant 𝑘
so that

𝒍𝒊𝒎
𝒕→∞

𝒇 𝒕 ⋅ 𝒕𝟐 = 𝒌

Support at zero: For every positive ε
we have

න
𝟎

𝜺

𝒇 𝒙 𝒅𝒙 > 𝟎

Theorem (S. 2019)
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The original map of Cannon and Thurston

S - a genus g ≥ 2, closed, oriented, hyperbolic surface

Elizabeth Field | UIUC Trees, dendrites, and the Cannon-Thurston map



The original map of Cannon and Thurston

M = S × [0, 1]/
(
(x, 0) = (ϕ(x), 1)

)
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The original map of Cannon and Thurston

Theorem (Cannon-Thurston, 1984)

The map ∂π1S
∂i−→ ∂π1M is continuous and surjective.

Definition

Let H and G be hyperbolic groups with H ≤ G. If the inclusion
map i : H → G extends to a continuous map ∂i : ∂H → ∂G,
this map is called the Cannon-Thurston map.

Elizabeth Field | UIUC Trees, dendrites, and the Cannon-Thurston map
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Topology of the original Cannon-Thurston map
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Topology of the original Cannon-Thurston map

Geodesic ending lamination
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Topology of the original Cannon-Thurston map

Geodesic ending laminations
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Topology of the original Cannon-Thurston map
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Topology of the original Cannon-Thurston map

∂i(∂π1(S)) = S2/(Λ̃ϕ+ ∪ Λ̃ϕ−)

Elizabeth Field | UIUC Trees, dendrites, and the Cannon-Thurston map



What is ∂π1(S)/Λ̃ϕ+?
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What is ∂π1(S)/Λ̃ϕ+?

Definition

A dendrite is a compact, connected, locally connected metric
space with no simple closed curves.

Elizabeth Field | UIUC Trees, dendrites, and the Cannon-Thurston map



How can we generalize this?

Cannon and Thurston’s example:

1→ π1S → π1M → 〈ϕ〉 → 1

The Cannon-Thurston map ∂i : ∂π1S → ∂π1M exists and is
surjective.

General case [Mitra, 1998]: Let H, G, and Q be infinite,
hyperbolic groups with

1→ H → G→ Q→ 1

The Cannon-Thurston map ∂i : ∂H → ∂G exists and is
surjective.

Elizabeth Field | UIUC Trees, dendrites, and the Cannon-Thurston map
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General case [Mitra, 1998]: Let H, G, and Q be infinite,
hyperbolic groups with

1→ H → G→ Q→ 1

The Cannon-Thurston map ∂i : ∂H → ∂G exists and is
surjective.

To each z ∈ ∂Q, Mitra defines an “algebraic ending lamination”
on H associated to z, Λz.

Theorem (F.)

∂H/Λz is a dendrite (a compact, tree-like topological space).
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Notation and Definitions

I L = L1 ∪ L2 ⊂ S3 a 2-component link

I X = S3\N (L)

I ρ : X̃ → X the universal abelian covering map

I Group of deck transformations H1(X ,Z) ∼= Z2 =< s, t >

I Λ ∼= ZH1(X ) ∼= Z[s, s−1, t, t−1]



The multivariable Alexander polynomial and H2(X̃ ,Z)

I Thm (e.g. Cochrane, 70): ∆L(s, t) = 0⇔ H2(X̃ ,Z) ∼= Λ
when regarded as a Λ-module.

I Definition:

gsplit = min{g(S) : S surface and [S] generates H2(X̃ ,Z)}

I Thm: gsplit = 0 if and only if L is a split link.

I Thm (A, Baker, in progress) gsplit = 1 if and only if L is
non-split and X contains an embedded essential torus that
separates a pair of disjoint Seifert surfaces for L1 and L2



Ex: the 2-component unlink
Credit: Knots and Links by Dale Rolfsen



Ex: a pretzel link

I Pretzel Link P(3,−2, 2,−3)

I Since it is hyperbolic, gsplit ≥ 2

I We show by construction that gsplit ≤ 2.

I So gsplit = 2.



Establishing an upper bound

I Goal: Construct surface Σ ⊂ X̃ s.t. [Σ] generates H2(X̃ ,Z)

I May not be of minimal genus, so only gives upper bound

I Assume L is non-split so X is a K (π1(X ), 1)-space



Getting a well-behaved 2-complex

Want to find 1-vertex 2-complex C s.t.

I C is constructed from a presentation of π1(X )

I C ↪→ X and X def. retracts to C .

I The homology class of every 1-cell is s or t



Some examples

I Wirtinger presentation

I Bridge presentations



Lifting C

C lifts nicely to ρ−1(C ) ∼= C̃

I 0-cells lift to Z2 lattice

I 1-cells lift to horizontal or vertical edges connecting lattice
points

I Abelianized Fox derivatives (plus more) tell us how to attach
2-cells



Illustrations



Illustrations



Finding a generator

I Alexander matrix describes the boundary map ∂ : C̃2 → C̃1

I Ker(∂) = H2(C̃ ,Z) ∼= H2(X̃ ,Z).

I Can find a generator of kernel by reducing it to reduced row
echelon form



Finding a surface

I Generator is 2-cycle Σ

I Σ is not a surface...

I ...but we may find a surface Σ′ ⊂ N (C̃ ) ⊂ X̃ that carries the
same homology class

I There is some choice involved in correcting S to a surface

I Can identify it by Euler Characteristic



Thank You!
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Land Acknowledgement

As part of reflecting on the continuing legacy of colonialism and genocide
here in the United States we should acknowledge that we are meeting on
the stolen territory of the Muscogee people.
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Annular Links

An Annular Link
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Annular Links

An Annular Link
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Filtrations on Khovanov-Lee homology

Khovanov-Lee homology carries a Z filtration used by J. Rasmussen
to define the s invariant.

Working with an annular link adds an additional Z filtration on
Khovanov-Lee homology.
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What can you do with a Z⊕ Z filtered complex?

From knot Floer homology there is ΥK (t) by Ozsváth-Stipsicz-Szabó
and Livingston.

From annular-Khovanov-Lee homology there is dt(L) by
Grigsby-A. Licata-Wehrli

Variants of this construction have been used by many people to define
invariants of links, including Chakraborty, Lewark-Lobb,
Sarkar-Seed-Szabó, and Truong-Zhang.
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Why should we care about the dt invariant?

d0(L) = s(L) − 1

dt(L) is an annular concordance invariant

dt(β̂) can detect right-veering, non-quasipositive braids

There are connections between dt(β̂) and transverse invariants of β̂
defined from Khovanov homology.

Gage Martin (Boston College) Annular Rasmussen invariants December 7th, 2019 6 / 10



Why should we care about the dt invariant?

d0(L) = s(L) − 1

dt(L) is an annular concordance invariant

dt(β̂) can detect right-veering, non-quasipositive braids

There are connections between dt(β̂) and transverse invariants of β̂
defined from Khovanov homology.

Gage Martin (Boston College) Annular Rasmussen invariants December 7th, 2019 6 / 10



Why should we care about the dt invariant?

d0(L) = s(L) − 1

dt(L) is an annular concordance invariant

dt(β̂) can detect right-veering, non-quasipositive braids

There are connections between dt(β̂) and transverse invariants of β̂
defined from Khovanov homology.

Gage Martin (Boston College) Annular Rasmussen invariants December 7th, 2019 6 / 10



Why should we care about the dt invariant?

d0(L) = s(L) − 1

dt(L) is an annular concordance invariant

dt(β̂) can detect right-veering, non-quasipositive braids

There are connections between dt(β̂) and transverse invariants of β̂
defined from Khovanov homology.

Gage Martin (Boston College) Annular Rasmussen invariants December 7th, 2019 6 / 10



Why should we care about the dt invariant?

d0(L) = s(L) − 1

dt(L) is an annular concordance invariant

dt(β̂) can detect right-veering, non-quasipositive braids

There are connections between dt(β̂) and transverse invariants of β̂
defined from Khovanov homology.

Gage Martin (Boston College) Annular Rasmussen invariants December 7th, 2019 6 / 10



Restrictions on dt(β̂) and ΥK (t)

Theorem (M.)

For a fixed braid index n, there are only finitely many possibilities for dt(β̂)
and a method for listing them all, where β is any n-braid.

Theorem (M.)

For a fixed concordance genus m, there are only finitely many possibilities
for ΥK (t) and a method for listing them all, where K is any knot of
concordance genus m.
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Computation of dt and s invariants of 3-braids

Theorem (M.)

For any 3-braid β, it is possible to explicitly read off dt(β̂) and s(β̂) from a
distinguished representative of the conjugacy class of β.
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Proof Sketch

Express 3-braids in their Murasugi conjugacy form

Find enough 3-braids where it is “easy” to compute the dt invariant

Use cobordisms to compute the dt invariants of all other 3-braids
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Recognizing Pseudo-Anosov Braids
in Out(Wn)

Rylee Lyman, Tufts University

Tech Topology IX, Dec 7 2019
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What is Out(Wn)?
The free Coxeter group of rank n:

Wn = (Z/2Z)∗n = ⟨a1, . . . , an | a2i = 1⟩.

As usual,
Out(Wn) = Aut(Wn)/ Inn(Wn).

“Nielsen-like” generators:

τij


ai 7→ aj

aj 7→ ai

ak 7→ ak k ̸= i, j

χij

{
aj 7→ aiajai

ak 7→ ak k ̸= j.
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A Classification Theorem
Theorem (L, ’19)
Every outer automorphism φ ∈ Out(Wn) may be represented
by a homotopy equivalence f : G → G of a Wn-orbigraph with
special properties called a relative train track map.
If φ is (fully) irreducible, the special homotopy equivalence is
nicer and is called a train track map.

Builds on work of Bestvina, Feighn and Handel for Out(Fn).

2
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A Train Track Map
A homotopy equivalence f : G → G is a train track map when
for each edge e ∈ G, the kth iterate fk|e is an immersion for all
k ≥ 1.

2 2

If

A t2 z
2 2

This is a train track map
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The Project
Pseudo-Anosov mapping class is to Pseudo-Anosov
homeomorphism as fully irreducible outer automorphism is
to train track map.

Theorem (Bestvina–Handel ’92, Brinkmann ’99)
If φ ∈ Out(Fn) is fully irreducible, it is either hyperbolic or φk

can be represented as a pseudo-Anosov homeomorphism of a
surface with one boundary component for some k ≥ 1.

Braid group is to mapping class group as Out(Wn) is to
Out(Fn).

Theorem (L, In Progress)
If φ ∈ Out(Wn) is fully irreducible, it is either hyperbolic or φk

can be represented as a pseudo-Anosov braid on an orbifold
with one boundary component with orbifold fundamental group
Wn for some k ≥ 1.
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Braids As Mapping Classes
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Following A Curve

J
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The Example
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Trisections of 4-manifolds

Kirby and Gay proved that any smooth 4-manifold has a trisection.
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Trisections of 4-manifolds

A trisection of X can be decoded using a diagram (Σ;α, β, γ).
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Trisection diagrams

Classically, each pair of loops (α, β), (β, γ) and (γ, α) is
slide-diffeomorphic equivalent to the standard picture:
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Trisection diagrams of small genus

Zupan and Meier proved in 2014 that these are the only irreducible
trisections of genus at most two.
The classification of genus three trisections remains open.
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Problems about diagrams

In general, it is not obvious what 4-manifold a
given trisection diagram represents.
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Farey trisections

Take a triplet of irreducible fractions pi
qi
∈ Q ∪ {1

0} satisfying

det
( pi pj
qi qj

)
= ±1. Consider the diagram D(p1

q1
, p2
q2
, p3
q3

) as below

Problem: How many distinct 4-manifolds/trisections are among the
diagrams D(p1

q1
, p2
q2
, p3
q3

)?
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?-trisection diagrams

In a joint work (Arxiv:1911.06467) with Jesse Moeller, we can loosen the
definition of trisection of a 4-manifold to solve the Farey trisections
problem using a simple diagramatic perspective.
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?-trisection diagrams

Diagram-wise, ?-trisections are allowed to have non-isotopic loops of
distinct colors which are disjoint from each other.

Each pair (α, β), (β, γ) and (γ, α) is slide-diffeomorphic equivalent to the
standard picture:

Given a ?-trisection diagram (Σ;α, β, γ), the cardinalities |α|, |β|, |γ|
might not be the same.
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Farey trisections

Suppose det
( pi pj
qi qj

)
= ±1 for all pairs (i , j).

=
[
CP2 − (loop)

]
∪f S2 × D2
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Farey trisections

Suppose det
( pi pj
qi qj

)
= ±1 for all pairs (i , j).

=
[
CP2 − (loop)

]
∪f S2 × D2

=CP2#(S2-bundle over S2)

With a bit more work, we can prove that any two diagrams D(p1
q1
, p2
q2
, p3
q3

)
for the same 4-manifold are indeed slide equivalent.
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Thank you for your attention!
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