Lightning Talks II Tech Topology Conference

 December 7, 2019
Constraining mapping class group homomorphisms using finite subgroups

Justin Lanier, Georgia Tech

with Lei Chen

Conjecture (Mirzakhani)

MCG homomorphisms

finite image

"induced by some manipulation of surfaces"

$\operatorname{Mod}\left(S_{14}\right)$
$\operatorname{Mod}\left(S_{13}\right)$
$\operatorname{Mod}\left(S_{12}\right)$
$\operatorname{Mod}\left(S_{11}\right)$
$\operatorname{Mod}\left(S_{10}\right)$
$\operatorname{Mod}\left(S_{9}\right)$
$\operatorname{Mod}\left(S_{8}\right)$
$\operatorname{Mod}\left(S_{7}\right)$
$\operatorname{Mod}\left(S_{6}\right)$
$\operatorname{Mod}\left(S_{5}\right)$
$\operatorname{Mod}\left(S_{4}\right)$
$\operatorname{Mod}\left(S_{3}\right)$
$\operatorname{Mod}\left(S_{2}\right)$
$\operatorname{Mod}\left(S_{1}\right)$
$\operatorname{Mod}\left(S_{0}\right)$

$\operatorname{Mod}\left(S_{14}\right)$
$\operatorname{Mod}\left(S_{13}\right)$
$\operatorname{Mod}\left(S_{12}\right)$
$\operatorname{Mod}\left(S_{11}\right)$
$\operatorname{Mod}\left(S_{10}\right)$
$\operatorname{Mod}\left(S_{9}\right)$
$\operatorname{Mod}\left(S_{8}\right)$
$\operatorname{Mod}\left(S_{7}\right)$
$\operatorname{Mod}\left(S_{6}\right)$
$\operatorname{Mod}\left(S_{5}\right)$
$\operatorname{Mod}\left(S_{4}\right)$
$\operatorname{Mod}\left(S_{3}\right)$
$\operatorname{Mod}\left(S_{2}\right)$
$\operatorname{Mod}\left(S_{1}\right)$
$\operatorname{Mod}\left(S_{0}\right)$

Theorem (Aramayona-Souto)

For $g \geq 6$ and $g^{\prime}<2 g-1$, every nontrivial homomorphism $\operatorname{Mod}\left(S_{g, n, b}\right) \rightarrow \operatorname{Mod}\left(S_{g^{\prime}, n,,^{\prime}, b^{\prime}}\right)$ is induced by an embedding.

So for closed surfaces, isomorphism or trivial.

Proof (Aramayona-Souto)

Dehn twists go to roots of multitwists

(Bridson)

Proof (Chen-L)

Proof (Chen-L)

Theorem (L-Margalit)

For $g \geq 3$, every nontrivial periodic mapping class that is not a hyperelliptic involution normally generates $\operatorname{Mod}\left(S_{g}\right)$.

Proof (Chen-L)

Theorem (L-Margalit)

For $g \geq 3$, every nontrivial periodic mapping class that is not a hyperelliptic involution normally generates $\operatorname{Mod}\left(S_{g}\right)$.

Proof (Chen-L)

Theorem (May-Zimmerman)

For $g \geq 3$ and odd, $\operatorname{Mod}\left(S_{g}\right)$ contains the first appearance of $C_{4} \times D_{g}$
For $g \geq 2$ and even, $\operatorname{Mod}\left(S_{g}\right)$ contains the first appearance of $D C_{g}$

Theorem (May-Zimmerman)

For $g \geq 3$ and odd, $\operatorname{Mod}\left(S_{g}\right)$ contains the first appearance of $C_{4} \times D_{g}$
For $g \geq 2$ and even, $\operatorname{Mod}\left(S_{g}\right)$ contains the first appearance of $D C_{g}$

Lemma (Chen-L)
These first appearances are the only appearances in the specified linear range.

	. + - ${ }^{\text {a }}$	$\square-$	\cdots	$\underline{-3}$	- -3.	-	\cdots
	$\pm=$	$=\square=$	$=2$	$\mathrm{Va}+\mathrm{Z}$			\pm
	$\underline{3}$	EV-	5 V		- 48	\pm	
2amex		$5=$	\%-		[13]		\cdots
$\underline{\square}$	W= $=$	$\underline{=}$	-			$\pm \underline{\square}$	\cdots
	20, x^{2}	$\underline{5}$	$\square+\square$	$\underline{+172}$	$\underline{=}$	$\underline{\square}$	
\cdots	\pm	$\underline{\square}$		5	$5 \cdot$	+ + Lex	
2-7x	$\underline{=}$	$5 \square$	+	$\underline{+}$		\cdots	
$=-2$		5va=	2 V	$\underline{\square}+$		PW	
추늘	WWaw	WNaw			+ x^{2}	$\underline{=}=$	
$=$		$=5$	5 L		Waxam	$=$	

$\operatorname{Mod}\left(S_{14}\right)$
$\operatorname{Mod}\left(S_{13}\right)$
$\operatorname{Mod}\left(S_{12}\right)$
$\operatorname{Mod}\left(S_{11}\right)$
$\operatorname{Mod}\left(S_{10}\right)$
$\operatorname{Mod}\left(S_{9}\right)$
$\operatorname{Mod}\left(S_{8}\right)$
$\operatorname{Mod}\left(S_{7}\right)$
$\operatorname{Mod}\left(S_{6}\right)$
$\operatorname{Mod}\left(S_{5}\right)$
$\operatorname{Mod}\left(S_{4}\right)$
$\operatorname{Mod}\left(S_{3}\right)$
$\operatorname{Mod}\left(S_{2}\right)$
$\operatorname{Mod}\left(S_{1}\right)$
$\operatorname{Mod}\left(S_{0}\right)$
$\operatorname{Mod}\left(S_{1}\right)$
$\operatorname{Mod}\left(S_{0}\right)$

Distribution of slope gaps for slit tori

Anthony Sanchez

Tech Topology Conference
Georgia Institute of Technology
December $7^{\text {th }}, 2019$

Slit Tori

Genus 2 surface

2 cone type singularities of angle 4π

Translation structure

Embedding into complex plane endows the surface with the holomorphic differential $d z$.

This allows us to measure lengths and gives a sense of direction.

Holonomy vectors

Geodesics starting and ending at a cone type singularity are called saddle connections. The vector representing it is called the holonomy vector.

$$
V_{\gamma}:=\int_{\gamma} d z=\binom{4}{1}
$$

How random are the holonomy vectors?

Random = gap distribution of slopes
Let Λ_{ω} denote the set of holonomy vectors

$$
\begin{gathered}
\operatorname{Slopes}^{R}\left(\Lambda_{\omega}\right)=\left\{s_{0}=0<s_{1}<\cdots<s_{N(R)}\right\} \\
\widetilde{\operatorname{Gaps}}^{R}\left(\Lambda_{\omega}\right)=\left\{s_{i}-s_{i-1} \mid i=1, \ldots, N(R)\right\}
\end{gathered}
$$

Gap distribution

Since $N(R) \sim \pi R^{2}$ it is natural to consider the normalized gaps

$$
\operatorname{Gaps}^{R}\left(\Lambda_{\omega}\right)=\left\{R^{2}\left(s_{i}-s_{i-1}\right) \mid i=1, \ldots, N(R)\right\}
$$

The gap distribution is given by the limit

$$
\lim _{R \rightarrow \infty} \frac{\left|\operatorname{Gaps}\left(\Lambda_{\omega}\right) \cap(c, d)\right|}{R^{2}}
$$

What can we say about this limit?

Theorem (S. 2019)

There exists a density function f so that

$$
\lim _{R \rightarrow \infty} \frac{\left|\operatorname{Gaps}^{R}\left(\Lambda_{\omega}\right) \cap(c, d)\right|}{R^{2}}=\int_{c}^{d} f(x) d x
$$

Moreover, f so that has a quadratic tail and support at zero.

Quadratic tail: There is a constant k so that

$$
\lim _{t \rightarrow \infty} f(t) \cdot t^{2}=k
$$

Support at zero: For every positive ε we have

$$
\int_{0}^{\varepsilon} f(x) d x>0
$$

Thank youn?

Special thanks to:

- Dr. Jayadev Athreya (My advisor)
- University of Washington
- Tech Topology Conference and Georgia Institute of Technology

Trees, dendrites, and the Cannon-Thurston map

Elizabeth Field
University of Illinois at Urbana-Champaign

Tech Topology Conference
December 7, 2019

The original map of Cannon and Thurston

S - a genus $g \geq 2$, closed, oriented, hyperbolic surface

The original map of Cannon and Thurston

The original map of Cannon and Thurston

The original map of Cannon and Thurston

Theorem (Cannon-Thurston, 1984)

The map $\partial \pi_{1} S \xrightarrow{\partial i} \partial \pi_{1} M$ is continuous and surjective.

The original map of Cannon and Thurston

Theorem (Cannon-Thurston, 1984)

The map $\partial \pi_{1} S \xrightarrow{\partial i} \partial \pi_{1} M$ is continuous and surjective.

The original map of Cannon and Thurston

Theorem (Cannon-Thurston, 1984)

The map $\partial \pi_{1} S \xrightarrow{\partial i} \partial \pi_{1} M$ is continuous and surjective.

Definition

Let H and G be hyperbolic groups with $H \leq G$. If the inclusion map $i: H \rightarrow G$ extends to a continuous map $\partial i: \partial H \rightarrow \partial G$, this map is called the Cannon-Thurston map.

Topology of the original Cannon-Thurston map

Topology of the original Cannon-Thurston map

Topology of the original Cannon-Thurston map

Geodesic ending lamination

Topology of the original Cannon-Thurston map

Geodesic ending lamination

Topology of the original Cannon-Thurston map

Geodesic ending lamination

Topology of the original Cannon-Thurston map

Geodesic ending laminations

Topology of the original Cannon-Thurston map

Topology of the original Cannon-Thurston map

Illustration by George Francis

Topology of the original Cannon-Thurston map

$$
\partial \pi_{1} S \cup \pi_{1} S=\mathbb{S}^{1} \cup \mathbb{H}^{2}
$$

Illustration by George Francis

$$
\partial i\left(\partial \pi_{1}(S)\right)=\mathbb{S}^{2} /\left(\widetilde{\Lambda_{\varphi^{+}}} \cup \widetilde{\Lambda_{\varphi^{-}}}\right)
$$

What is $\partial \pi_{1}(S) / \widetilde{\Lambda_{\varphi^{+}}}$?

What is $\partial \pi_{1}(S) / \widetilde{\Lambda_{\varphi^{+}}}$?

What is $\partial \pi_{1}(S) / \widetilde{\Lambda_{\varphi^{+}}}$?

What is $\partial \pi_{1}(S) / \widetilde{\Lambda_{\varphi+}}$?

Definition

A dendrite is a compact, connected, locally connected metric space with no simple closed curves.

How can we generalize this?

Cannon and Thurston's example:

$$
1 \rightarrow \pi_{1} S \rightarrow \pi_{1} M \rightarrow\langle\varphi\rangle \rightarrow 1
$$

The Cannon-Thurston map $\partial i: \partial \pi_{1} S \rightarrow \partial \pi_{1} M$ exists and is surjective.

How can we generalize this?

Cannon and Thurston's example:

$$
1 \rightarrow \pi_{1} S \rightarrow \pi_{1} M \rightarrow\langle\varphi\rangle \rightarrow 1
$$

The Cannon-Thurston map $\partial i: \partial \pi_{1} S \rightarrow \partial \pi_{1} M$ exists and is surjective.

General case [Mitra, 1998]: Let H, G, and Q be infinite, hyperbolic groups with

$$
1 \rightarrow H \rightarrow G \rightarrow Q \rightarrow 1
$$

The Cannon-Thurston map $\partial i: \partial H \rightarrow \partial G$ exists and is surjective.

How can we generalize this?

General case [Mitra, 1998]: Let H, G, and Q be infinite, hyperbolic groups with

$$
1 \rightarrow H \rightarrow G \rightarrow Q \rightarrow 1
$$

The Cannon-Thurston map $\partial i: \partial H \rightarrow \partial G$ exists and is surjective.

To each $z \in \partial Q$, Mitra defines an "algebraic ending lamination" on H associated to z, Λ_{z}.

How can we generalize this?

General case [Mitra, 1998]: Let H, G, and Q be infinite, hyperbolic groups with

$$
1 \rightarrow H \rightarrow G \rightarrow Q \rightarrow 1
$$

The Cannon-Thurston map $\partial i: \partial H \rightarrow \partial G$ exists and is surjective.

To each $z \in \partial Q$, Mitra defines an "algebraic ending lamination" on H associated to z, Λ_{z}.

Theorem (F.)

$\partial H / \Lambda_{z}$ is a dendrite (a compact, tree-like topological space).

An algorithm for an upper bound on splitting genus

Christopher Anderson
University of Miami
canders@math.miami.edu

Dec 7th 2019

Notation and Definitions

- $L=L_{1} \cup L_{2} \subset S^{3}$ a 2-component link
- $X=S^{3} \backslash \mathcal{N}(L)$
- $\rho: \widetilde{X} \rightarrow X$ the universal abelian covering map
- Group of deck transformations $H_{1}(X, \mathbb{Z}) \cong \mathbb{Z}^{2}=\langle s, t\rangle$
- $\Lambda \cong \mathbb{Z} H_{1}(X) \cong \mathbb{Z}\left[s, s^{-1}, t, t^{-1}\right]$

The multivariable Alexander polynomial and $H_{2}(\tilde{X}, \mathbb{Z})$

- Thm (e.g. Cochrane, 70): $\Delta_{L}(s, t)=0 \Leftrightarrow H_{2}(\widetilde{X}, \mathbb{Z}) \cong \Lambda$ when regarded as a Λ-module.
- Definition:

$$
g_{\text {split }}=\min \left\{g(S): S \text { surface and }[\mathrm{S}] \text { generates } H_{2}(\widetilde{X}, \mathbb{Z})\right\}
$$

- Thm: $g_{\text {split }}=0$ if and only if L is a split link.
- Thm (A, Baker, in progress) $g_{\text {split }}=1$ if and only if L is non-split and X contains an embedded essential torus that separates a pair of disjoint Seifert surfaces for L_{1} and L_{2}

Ex: the 2-component unlink

Credit: Knots and Links by Dale Rolfsen

The universal abelian cover then looks like an infinite net with balloons attached at the junctions:

Ex: a pretzel link

- Pretzel Link $P(3,-2,2,-3)$
- Since it is hyperbolic, $g_{\text {split }} \geq 2$
- We show by construction that $g_{\text {split }} \leq 2$.
- So $g_{\text {split }}=2$.

Establishing an upper bound

- Goal: Construct surface $\Sigma \subset \widetilde{X}$ s.t. [Σ] generates $H_{2}(\widetilde{X}, \mathbb{Z})$
- May not be of minimal genus, so only gives upper bound
- Assume L is non-split so X is a $K\left(\pi_{1}(X), 1\right)$-space

Getting a well-behaved 2-complex

Want to find 1 -vertex 2 -complex C s.t.

- C is constructed from a presentation of $\pi_{1}(X)$
- $C \hookrightarrow X$ and X def. retracts to C.
- The homology class of every 1 -cell is s or t

Some examples

- Wirtinger presentation
- Bridge presentations

Lifting C

C lifts nicely to $\rho^{-1}(C) \cong \widetilde{C}$

- 0 -cells lift to \mathbb{Z}^{2} lattice
- 1-cells lift to horizontal or vertical edges connecting lattice points
- Abelianized Fox derivatives (plus more) tell us how to attach 2-cells

Illustrations

Illustrations

Finding a generator

- Alexander matrix describes the boundary map $\partial: \widetilde{C}_{2} \rightarrow \widetilde{C_{1}}$
- $\operatorname{Ker}(\partial)=H_{2}(\widetilde{C}, \mathbb{Z}) \cong H_{2}(\widetilde{X}, \mathbb{Z})$.
- Can find a generator of kernel by reducing it to reduced row echelon form

Finding a surface

- Generator is 2-cycle Σ
- Σ is not a surface...
- ...but we may find a surface $\Sigma^{\prime} \subset \mathcal{N}(\widetilde{C}) \subset \widetilde{X}$ that carries the same homology class
- There is some choice involved in correcting S to a surface
- Can identify it by Euler Characteristic

Thank You!

Annular Rasmussen invariants: Properties and 3-braid classification

Gage Martin
Boston College

December 7th, 2019

Land Acknowledgement

As part of reflecting on the continuing legacy of colonialism and genocide here in the United States we should acknowledge that we are meeting on the stolen territory of the Muscogee people.

Annular Links

Annular Links

An Annular Link

Filtrations on Khovanov-Lee homology

- Khovanov-Lee homology carries a \mathbb{Z} filtration used by J. Rasmussen to define the s invariant.

Filtrations on Khovanov-Lee homology

- Khovanov-Lee homology carries a \mathbb{Z} filtration used by J. Rasmussen to define the s invariant.
- Working with an annular link adds an additional \mathbb{Z} filtration on Khovanov-Lee homology.

What can you do with a $\mathbb{Z} \oplus \mathbb{Z}$ filtered complex?

- From knot Floer homology there is $\Upsilon_{K}(t)$ by Ozsváth-Stipsicz-Szabó and Livingston.

What can you do with a $\mathbb{Z} \oplus \mathbb{Z}$ filtered complex?

- From knot Floer homology there is $\Upsilon_{K}(t)$ by Ozsváth-Stipsicz-Szabó and Livingston.
- From annular-Khovanov-Lee homology there is $d_{t}(L)$ by Grigsby-A. Licata-Wehrli

What can you do with a $\mathbb{Z} \oplus \mathbb{Z}$ filtered complex?

- From knot Floer homology there is $\Upsilon_{K}(t)$ by Ozsváth-Stipsicz-Szabó and Livingston.
- From annular-Khovanov-Lee homology there is $d_{t}(L)$ by Grigsby-A. Licata-Wehrli
- Variants of this construction have been used by many people to define invariants of links, including Chakraborty, Lewark-Lobb, Sarkar-Seed-Szabó, and Truong-Zhang.

Why should we care about the d_{t} invariant?

Why should we care about the d_{t} invariant?

- $d_{0}(L)=s(L)-1$

Why should we care about the d_{t} invariant?

- $d_{0}(L)=s(L)-1$
- $d_{t}(L)$ is an annular concordance invariant

Why should we care about the d_{t} invariant?

- $d_{0}(L)=s(L)-1$
- $d_{t}(L)$ is an annular concordance invariant
- $d_{t}(\widehat{\beta})$ can detect right-veering, non-quasipositive braids

Why should we care about the d_{t} invariant?

- $d_{0}(L)=s(L)-1$
- $d_{t}(L)$ is an annular concordance invariant
- $d_{t}(\widehat{\beta})$ can detect right-veering, non-quasipositive braids
- There are connections between $d_{t}(\widehat{\beta})$ and transverse invariants of $\widehat{\beta}$ defined from Khovanov homology.

Restrictions on $d_{t}(\widehat{\beta})$ and $\Upsilon_{K}(t)$

Theorem (M.)

For a fixed braid index n, there are only finitely many possibilities for $d_{t}(\widehat{\beta})$ and a method for listing them all, where β is any n-braid.

Restrictions on $d_{t}(\widehat{\beta})$ and $\Upsilon_{K}(t)$

Theorem (M.)

For a fixed braid index n, there are only finitely many possibilities for $d_{t}(\widehat{\beta})$ and a method for listing them all, where β is any n-braid.

Theorem (M.)

For a fixed concordance genus m, there are only finitely many possibilities for $\Upsilon_{K}(t)$ and a method for listing them all, where K is any knot of concordance genus m.

Computation of d_{t} and s invariants of 3-braids

Theorem (M.)

For any 3-braid β, it is possible to explicitly read off $d_{t}(\widehat{\beta})$ and $s(\widehat{\beta})$ from a distinguished representative of the conjugacy class of β.

Proof Sketch

- Express 3-braids in their Murasugi conjugacy form

Proof Sketch

- Express 3-braids in their Murasugi conjugacy form
- Find enough 3-braids where it is "easy" to compute the d_{t} invariant

Proof Sketch

- Express 3-braids in their Murasugi conjugacy form
- Find enough 3-braids where it is "easy" to compute the d_{t} invariant
- Use cobordisms to compute the d_{t} invariants of all other 3-braids

Thank You

Recognizing Pseudo-Anosov Braids in Out $\left(W_{n}\right)$

Rylee Lyman, Tufts University
Tech Topology IX, Dec 72019

What is $\operatorname{Out}\left(W_{n}\right)$?

The free Coxeter group of rank n :

$$
W_{n}=(\mathbb{Z} / 2 \mathbb{Z})^{* n}=\left\langle a_{1}, \ldots, a_{n} \mid a_{i}^{2}=1\right\rangle .
$$

What is $\operatorname{Out}\left(W_{n}\right)$?

The free Coxeter group of rank n :

$$
W_{n}=(\mathbb{Z} / 2 \mathbb{Z})^{* n}=\left\langle a_{1}, \ldots, a_{n} \mid a_{i}^{2}=1\right\rangle .
$$

As usual,

$$
\operatorname{Out}\left(W_{n}\right)=\operatorname{Aut}\left(W_{n}\right) / \operatorname{Inn}\left(W_{n}\right) .
$$

What is $\operatorname{Out}\left(W_{n}\right)$?

The free Coxeter group of rank n :

$$
W_{n}=(\mathbb{Z} / 2 \mathbb{Z})^{* n}=\left\langle a_{1}, \ldots, a_{n} \mid a_{i}^{2}=1\right\rangle .
$$

As usual,

$$
\operatorname{Out}\left(W_{n}\right)=\operatorname{Aut}\left(W_{n}\right) / \operatorname{Inn}\left(W_{n}\right)
$$

"Nielsen-like" generators:

$$
\tau_{i j}\left\{\begin{array}{l}
a_{i} \mapsto a_{j} \\
a_{j} \mapsto a_{i} \\
a_{k} \mapsto a_{k}
\end{array} \quad k \neq i, j \quad \chi_{i j}\left\{\begin{array}{l}
a_{j} \mapsto a_{i} a_{j} a_{i} \\
a_{k} \mapsto a_{k}
\end{array} \quad k \neq j .\right.\right.
$$

A Classification Theorem

Theorem (L, '19)
Every outer automorphism $\varphi \in \operatorname{Out}\left(W_{n}\right)$ may be represented by a homotopy equivalence $f: G \rightarrow G$ of a W_{n}-orbigraph with special properties called a relative train track map. If φ is (fully) irreducible, the special homotopy equivalence is nicer and is called a train track map.

A Classification Theorem

Theorem (L, '19)
Every outer automorphism $\varphi \in \operatorname{Out}\left(W_{n}\right)$ may be represented by a homotopy equivalence $f: G \rightarrow G$ of a W_{n}-orbigraph with special properties called a relative train track map. If φ is (fully) irreducible, the special homotopy equivalence is nicer and is called a train track map.

Builds on work of Bestvina, Feighn and Handel for $\operatorname{Out}\left(F_{n}\right)$.

a graph with
$\pi_{1}=F_{3}$
an orbigraph with
$\pi_{1}=\omega_{4}$

A Train Track Map
A homotopy equivalence $f: G \rightarrow G$ is a train track map when for each edge $e \in G$, the k th iterate $\left.f^{k}\right|_{e}$ is an immersion for all $k \geq 1$.

This is a train track map!

The Project

Pseudo-Anosov mapping class is to Pseudo-Anosov homeomorphism as fully irreducible outer automorphism is to train track map.

The Project

Pseudo-Anosov mapping class is to Pseudo-Anosov homeomorphism as fully irreducible outer automorphism is to train track map.

Theorem (Bestvina-Handel '92, Brinkmann '99) If $\varphi \in \operatorname{Out}\left(F_{n}\right)$ is fully irreducible, it is either hyperbolic or φ^{k} can be represented as a pseudo-Anosov homeomorphism of a surface with one boundary component for some $k \geq 1$.

The Project

Pseudo-Anosov mapping class is to Pseudo-Anosov homeomorphism as fully irreducible outer automorphism is to train track map.

Theorem (Bestvina-Handel '92, Brinkmann '99) If $\varphi \in \operatorname{Out}\left(F_{n}\right)$ is fully irreducible, it is either hyperbolic or φ^{k} can be represented as a pseudo-Anosov homeomorphism of a surface with one boundary component for some $k \geq 1$.

Braid group is to mapping class group as $\operatorname{Out}\left(W_{n}\right)$ is to $\operatorname{Out}\left(F_{n}\right)$.

The Project

Pseudo-Anosov mapping class is to Pseudo-Anosov homeomorphism as fully irreducible outer automorphism is to train track map.
Theorem (Bestvina-Handel '92, Brinkmann '99) If $\varphi \in \operatorname{Out}\left(F_{n}\right)$ is fully irreducible, it is either hyperbolic or φ^{k} can be represented as a pseudo-Anosov homeomorphism of a surface with one boundary component for some $k \geq 1$.

Braid group is to mapping class group as $\operatorname{Out}\left(W_{n}\right)$ is to $\operatorname{Out}\left(F_{n}\right)$.

Theorem (L, In Progress)

If $\varphi \in \operatorname{Out}\left(W_{n}\right)$ is fully irreducible, it is either hyperbolic or φ^{k} can be represented as a pseudo-Anosov braid on an orbifold with one boundary component with orbifold fundamental group W_{n} for some $k \geq 1$.

Braids As Mapping Classes

$$
\begin{aligned}
& S^{2} \backslash\{\infty\} \\
& \vdots \\
& \vdots \\
& S^{2} \backslash\{\infty\}
\end{aligned}
$$

Following A Curve

The Example

Need a 2-cell attaching map:

$$
\ell \simeq f(l)
$$

A construction of pseudo-Anosov homeomorphisms using positive twists

Yvon Verberne - University of Toronto

Pseudo-Anosov: No power of f maps any curve back to itself

Pseudo-Anosov: No power of f maps any curve back to itself

Prior Constructions:

Pseudo-Anosov: No power of f maps any curve back to itself

Prior Constructions:

Thurston's Construction

Pseudo-Anosov: No power of f maps any curve back to itself
Prior Constructions:
Thurston's Construction
Penner's Construction

Pseudo-Anosov: No power of f maps any curve back to itself

Prior Constructions:

Thurston's Construction
 Penner's Construction

\square Uses both positive and negative Dehn twists; uses two multi-twists

Pseudo-Anosov: No power of f maps any curve back to itself

Prior Constructions:

Thurston's Construction
Penner's Construction

Uses both positive and negative Dehn twists; uses two multi-twists

Hamidi-Tehrani's Construction

Pseudo-Anosov: No power of f maps any curve back to itself

Prior Constructions:

Thurston's Construction
Penner's Construction

Uses both positive and negative Dehn twists; uses two multi-twists

Hamidi-Tehrani's Construction
Uses a sufficiently high number of positive Dehn twists; uses two multi-twists

Pseudo-Anosov: No power of f maps any curve back to itself

Prior Constructions:

Thurston's Construction
Penner's Construction

Uses both positive and negative Dehn twists; uses two multi-twists

Hamidi-Tehrani's Construction
Uses a sufficiently high number of positive Dehn twists; uses two multi-twists

New Construction:
Theorem (V.):
Pseudo-Anosov construction using only positive twists

Pseudo-Anosov: No power of f maps any curve back to itself Theorem (V.): Pseudo-Anosov construction using only positive twists

Pseudo-Anosov: No power of f maps any curve back to itself Theorem (V.): Pseudo-Anosov construction using only positive twists

Twist red curves
Twist blue curves
\rightsquigarrow pseudo-Anosov map ϕ

Pseudo-Anosov: No power of f maps any curve back to itself Theorem (V.): Pseudo-Anosov construction using only positive twists

Yvon Verberne - University of Toronto

Theorem (V.): pseudo-Anosov construction using only positive twists

Theorem (V.): pseudo-Anosov construction using only positive twists

Theorem (V.): pseudo-Anosov construction using only positive twists

Yvon Verberne - University of Toronto

Theorem (V.): pseudo-Anosov construction using only positive twists

Theorem (V.): pseudo-Anosov construction using only positive twists

Yvon Verberne - University of Toronto

Theorem (V.): pseudo-Anosov construction using only positive twists

Yvon Verberne - University of Toronto

Theorem (V.): pseudo-Anosov construction using only positive twists

Yvon Verberne - University of Toronto

Theorem (V.): pseudo-Anosov construction using only positive twists
Theorem (V.): this construction provides examples of pseudo-Anosov maps which are unique from both Penner and Thurston's constuctions

Theorem (V.): pseudo-Anosov construction using only positive twists
Theorem (V.): this construction provides examples of pseudo-Anosov maps which are unique from both Penner and Thurston's constuctions

Theorem (V.): pseudo-Anosov construction using only positive twists
Theorem (V.): this construction provides examples of pseudo-Anosov maps which are unique from both Penner and Thurston's constuctions

Theorem (V.): pseudo-Anosov construction using only positive twists
Theorem (V.): this construction provides examples of pseudo-Anosov maps which are unique from both Penner and Thurston's constuctions

Theorem (V.): pseudo-Anosov construction using only positive twists
Theorem (V.): this construction provides examples of pseudo-Anosov maps which are unique from both Penner and Thurston's constuctions

Theorem (V.): pseudo-Anosov construction using only positive twists
Theorem (V.): this construction provides examples of pseudo-Anosov maps which are unique from both Penner and Thurston's constuctions

Theorem (V.): pseudo-Anosov construction using only positive twists
Theorem (V.): this construction provides examples of pseudo-Anosov maps which are unique from both Penner and Thurston's constuctions

Twist red curves, twist blue curves, twist magenta curve, twist green curve \rightsquigarrow pseudo-Anosov map

Yvon Verberne - University of Toronto

Diagrams of \star-trisections

Román Aranda
University of lowa

December 2019

Trisections of 4-manifolds

Kirby and Gay proved that any smooth 4-manifold has a trisection.

Trisections of 4-manifolds

A trisection of X can be decoded using a diagram ($\Sigma ; \alpha, \beta, \gamma)$.

Trisection diagrams

Classically, each pair of loops $(\alpha, \beta),(\beta, \gamma)$ and (γ, α) is slide-diffeomorphic equivalent to the standard picture:

Trisection diagrams of small genus

Zupan and Meier proved in 2014 that these are the only irreducible trisections of genus at most two.
The classification of genus three trisections remains open.

Problems about diagrams

In general, it is not obvious what 4-manifold a given trisection diagram represents.

Farey trisections

Take a triplet of irreducible fractions $\frac{p_{i}}{q_{i}} \in \mathbb{Q} \cup\left\{\frac{1}{0}\right\}$ satisfying $\operatorname{det}\binom{p_{i} p_{j}}{q_{i} q_{j}}= \pm 1$. Consider the diagram $D\left(\frac{p_{1}}{q_{1}}, \frac{p_{2}}{q_{2}}, \frac{p_{3}}{q_{3}}\right)$ as below

Farey trisections

Take a triplet of irreducible fractions $\frac{p_{i}}{q_{i}} \in \mathbb{Q} \cup\left\{\frac{1}{0}\right\}$ satisfying $\operatorname{det}\binom{p_{i} p_{j}}{q_{i} q_{j}}= \pm 1$. Consider the diagram $D\left(\frac{p_{1}}{q_{1}}, \frac{p_{2}}{q_{2}}, \frac{p_{3}}{q_{3}}\right)$ as below

Problem: How many distinct 4-manifolds/trisections are among the diagrams $D\left(\frac{p_{1}}{q_{1}}, \frac{p_{2}}{q_{2}}, \frac{p_{3}}{q_{3}}\right)$?

*-trisection diagrams

In a joint work (Arxiv:1911.06467) with Jesse Moeller, we can loosen the definition of trisection of a 4-manifold to solve the Farey trisections problem using a simple diagramatic perspective.

*-trisection diagrams

Diagram-wise, \star-trisections are allowed to have non-isotopic loops of distinct colors which are disjoint from each other.

*-trisection diagrams

Diagram-wise, \star-trisections are allowed to have non-isotopic loops of distinct colors which are disjoint from each other. Each pair $(\alpha, \beta),(\beta, \gamma)$ and (γ, α) is slide-diffeomorphic equivalent to the standard picture:

Given a $\begin{aligned} & \text {-trisection diagram }(\Sigma ; \alpha, \beta, \gamma) \text {, the cardinalities }|\alpha|,|\beta|,|\gamma|\end{aligned}$ might not be the same.

Farey trisections

Suppose $\operatorname{det}\left(\begin{array}{ll}p_{i} & p_{j} \\ q_{i} & q_{j}\end{array}\right)= \pm 1$ for all pairs (i, j).

Farey trisections

Suppose $\operatorname{det}\left(\begin{array}{ll}p_{i} & p_{j} \\ q_{i} & q_{j}\end{array}\right)= \pm 1$ for all pairs (i, j).

$$
\begin{aligned}
& =\left[C P^{2}-(\text { loop })\right] \cup_{f} S^{2} \times D^{2} \\
& =C P^{2} \#\left(S^{2} \times D^{2} \cup_{f} S^{2} \times D^{2}\right)
\end{aligned}
$$

Farey trisections

Suppose $\operatorname{det}\left(\begin{array}{cc}p_{i} & p_{j} \\ q_{i} & q_{j}\end{array}\right)= \pm 1$ for all pairs (i, j).

$$
\begin{aligned}
& =\left[C P^{2}-(\text { loop })\right] \cup_{f} S^{2} \times D^{2} \\
& =C P^{2} \#\left(S^{2} \text {-bundle over } S^{2}\right)
\end{aligned}
$$

With a bit more work, we can prove that any two diagrams $D\left(\frac{p_{1}}{q_{1}}, \frac{p_{2}}{q_{2}}, \frac{p_{3}}{q_{3}}\right)$ for the same 4-manifold are indeed slide equivalent.

Thank you for your attention!

