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Constraining mapping class group

homomorphisms using finite subgroups

Justin Lanier, Georgia Tech

with Lei Chen



Conjecture (Mirzakhani)

MCG homomorphisms
“induced by
finite image some manipulation

of surfaces”
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Theorem (Aramayona—Souto)

For g > 6 and g’ < 2g — 1, every nontrivial
homomorphism Mod(S, ,, ,)—=>Mod(S,,, ;)

is induced by an embedding.

So for closed surtaces, isomorphism or trivial.



Proof (Aramayona—Souto)

Dehn twists Dehn twists A chain
g0to ~_y  goto of curves,
roots of Dehn twists and an
multitwists embedding

(Bridson)
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Proof (Chen—L)

torsion dies
—
homomorphism
trivial

homomorphism

+  torsion dies -~
trivial



Proof (Chen—L)

torsion dies
—
homomorphism
trivial

homomorphism

+  torsion dies -
trivial

Theorem (L—Margalit)

For g > 3, every nontrivial periodic mapping
class that is not a hyperelliptic involution
normally generates Mod(S,).



Proof (Chen—L)

torsion dies
—
homomorphism
trivial

homomorphism

+  torsion dies -
trivial

Theorem (L—Margalit)

For g > 3, every nontrivial periodic mapping
class that is not a hyperelliptic involution
normally generates Mod(S,).



Proof (Chen—L)

torsion dies

; . , ;
h hi + torsion dies h0m0fr.lqrph15m
R trivial
trivial

=
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Mod(S$-)

order
4g +2 ~~ 30



Mod(S$-)

order
4o +2 ~~ 30



Mod(S$-)

order
4o +2 ~~ 30



Mod(Sp)

Mod(Sg) 2227
Mod(Sy)
Mod(S$-) Mod(s)
MOd(Ss)
s
30 Mod(S;
W Mod(S$,)
Mod(S))
Mod(S,)

order



Theorem (May—Zimmerman)

For g > 3 and odd, Mod(S,) contains the first
appearance of Cy X D,

For g > 2 and even, Mod(S,) contains the first
appearance of DC,



Theorem (May—Zimmerman)

For g > 3 and odd, Mod(S,) contains the first
appearance of Cy X D,

For g > 2 and even, Mod(S,) contains the first
appearance of DC,

Lemma (Chen—L)

These first appearances are the on/y appearances
in the specified linear range.
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Mod($-)




Mod($-)

Nnew {



Thanks!

Mod($-)

Nnew {






Slit Tori

L

Genus 2 surface

2 cone type singularities of angle 4m




Translation structure

Embedding into complex plane endows the surface with the holomorphic
differential dz.

This allows us to measure lengths and gives a sense of direction.




Holonomy vectors

Geodesics starting and ending at a cone type singularity are called
saddle connections. The vector representing it is called the holonomy

vector.
Vv, = f dz = (%)
14




How random are the holonomy vectors?

X X " Random = gap distribution of slopes
X Let A, denote the set of holonomy vectors
SN(R) X X
X .
v X y X Slopes®(A,) ={sp =0 < 51 < < sy}
X Sy X Gaps®R(A,) = {s;—s;_1|i=1,.., N(R))




Gap distribution

Since N(R) ~ m R? it is natural to consider the normalized gaps

Gaps®(A,) = {R*(s; —s;i_)|i=1,..,N(R) }

The gap distribution is given by the limit

|Gaps(A,) N (c,d)]
im
R— RZ

What can we say about this limit?




Theorem (S. 2019)

There exists a density function f so
that

] GapsR (/la,)n(c,d)|
lim | =
R— R?

[4f(x) dx

Moreover, f so that has a quadratic
tail and support at zero.

Quadratic tail: There is a constant k
so that

%im fo)-t* =k

Support at zero: For every positive €
we have

fgf(x) dx > 0
0




Special thanks to:
 Dr. Jayadev Athreya (My advisor)
* University of Washington

* Tech Topology Conference and
Georgia Institute of Technology




Trees, dendrites, and the
Cannon-Thurston map

Elizabeth Field
University of Illinois at Urbana-Champaign

Tech Topology Conference
December 7, 2019

Elizabeth Field | UIUC Trees, dendrites, and the Cannon-Thurston map



The original map of Cannon and Thurston

S - a genus g > 2, closed, oriented, hyperbolic surface

Elizabeth Field | UIUC Trees, dendrites, and the Cannon-Thurston map



The original map of Cannon and Thurston

M =S5 X [07 1]/(('7370) — (QD(CE% 1))

Elizabeth Field | UIUC Trees, dendrites, and the Cannon-Thurston map



The original map of Cannon and Thurston

M 4H3 ~ m M
q.i.

Elizabeth Field | UIUC

Trees, dendrites, and the Cannon-Thurston map



The original map of Cannon and Thurston
Theorem (Cannon-Thurston, 1984)

The map 0m S LN Om M is continuous and surjective.

Om S = OH? = St Om M = OH3 = §?

Elizabeth Field | UIUC Trees, dendrites, and the Cannon-Thurston map



The original map of Cannon and Thurston

Theorem (Cannon-Thurston, 1984)

The map 0m S ﬁ) omi M is continuous and surjective.

67‘(’15 = 8]H[2 = Sl

Elizabeth Field | UIUC Trees, dendrites, and the Cannon-Thurston map



The original map of Cannon and Thurston

Theorem (Cannon-Thurston, 1984)

The map 0w S ﬁ) omi M is continuous and surjective.

87'('15 = 8]H[2 = Sl

Definition

Let H and G be hyperbolic groups with H < G. If the inclusion
map i : H — G extends to a continuous map 0i : 0H — 0G,
this map is called the Cannon-Thurston map.

Elizabeth Field | UIUC Trees, dendrites, and the Cannon-Thurston map



Topology of the original Cannon-Thurston map

Elizabeth Field | UIUC Trees, dendrites, and the Cannon-Thurston map



Topology of the original Cannon-Thurston map
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Topology of the original Cannon-Thurston map

Geodesic ending lamination
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Topology of the original Cannon-Thurston map

Geodesic ending lamination

Elizabeth Field | UIUC Trees, dendrites, and the Cannon-Thurston map



Topology of the original Cannon-Thurston map

Geodesic ending lamination
o
Elizabeth Field | UIUC

Trees, dendrites, and the Cannon-Thurston

map



Topology of the original Cannon-Thurston map

Geodesic ending laminations -
o

Elizabeth Field | UIUC Trees, dendrites, and the Cannon-Thurston map



Topology of the original Cannon-Thurston map




Topology of the original Cannon-Thurston map

OmM = OH3 = §?

Elizabeth Field | UIUC Trees, dendrites, and the Cannon-Thurston map



Topology of the original Cannon-Thurston map

0i(9m1(5)) = $*/(Ayr UA,-)

Elizabeth Field | UIUC Trees, dendrites, and the Cannon-Thurston map



What is 971 (S)/A g+ ?

Elizabeth Field | UIUC



What is Om1(S)/Ap+?

®
o}
—
ot
=
—
<
=
ie;

n-Thurston map

d the Canno

Elizabeth Field | UIUC



What is 971 (S)/A g+ ?

dual R-tree

/ 87T15/A

ot = Tt

Elizabeth Field | UIUC Trees, dendrites, and the Cannon-Thurston map



—

What is Om1(S)/Ap+?

dual R-tree

Om1S/Ay+ = Tpr

Definition

A dendrite is a compact, connected, locally connected metric
space with no simple closed curves.

Elizabeth Field | UIUC Trees, dendrites, and the Cannon-Thurston map



How can we generalize this?

Cannon and Thurston’s example:
1—>mS—>mM—(p) —1

The Cannon-Thurston map 9i : 9m.S — dm1 M exists and is
surjective.

Elizabeth Field | UIUC Trees, dendrites, and the Cannon-Thurston map



How can we generalize this?

Cannon and Thurston’s example:
1—->mS—->mM — (p)—1

The Cannon-Thurston map 9i : 9m.S — dm1 M exists and is
surjective.

General case [Mitra, 1998]: Let H, G, and @ be infinite,
hyperbolic groups with

1-H—-G—-Q—1

The Cannon-Thurston map 9i : 0H — 0G exists and is
surjective.

Elizabeth Field | UIUC Trees, dendrites, and the Cannon-Thurston map



How can we generalize this?

General case [Mitra, 1998]: Let H, G, and @ be infinite,
hyperbolic groups with

1-H—-G—-Q—1

The Cannon-Thurston map 9i : 0H — 0G exists and is
surjective.

To each z € 9Q), Mitra defines an “algebraic ending lamination”
on H associated to z, A,.

Elizabeth Field | UIUC Trees, dendrites, and the Cannon-Thurston map



How can we generalize this?

General case [Mitra, 1998]: Let H, G, and @ be infinite,
hyperbolic groups with

1-H->G—-Q—1

The Cannon-Thurston map 9i : 0H — 0G exists and is
surjective.

To each z € 9Q), Mitra defines an “algebraic ending lamination”

on H associated to z, A,.

Theorem (F.)
OH/A. is a dendrite (a compact, tree-like topological space).

Elizabeth Field | UIUC Trees, dendrites, and the Cannon-Thurston map



An algorithm for an upper bound on splitting
genus

Christopher Anderson

University of Miami

canders@math.miami.edu

Dec 7th 2019



Notation and Definitions

L=L;ULy, C S3?a2-component link

X = SHWN(L)

p: X — X the universal abelian covering map

Group of deck transformations Hy(X,Z) = 72 =< s, t >
N2 ZH (X)) = Z[s,s71 ¢, t71]

vVvyyyvyy



The multivariable Alexander polynomial and Hy(X,Z)

» Thm (e.g. Cochrane, 70): A/(s,t) = 0 < Hy(X,Z) = A
when regarded as a A-module.
» Definition:

gsplit = min{g(S) : S surface and [S] generates Hao(X,Z)}

» Thm: gsir = 0 if and only if L is a split link.

» Thm (A, Baker, in progress) gspiir = 1 if and only if L is
non-split and X contains an embedded essential torus that
separates a pair of disjoint Seifert surfaces for L; and L;



Ex: the 2-component unlink

Credit: Knots and Links by Dale Rolfsen

RN Ge



Ex: a pretzel link

» Pretzel Link P(3,-2,2,-3)

» Since it is hyperbolic, gspiir > 2

» We show by construction that gsyir < 2.
> So &split = 2.

u}
o)
1
n
it

RN Ge



Establishing an upper bound

> Goal: Construct surface ¥ C X s.t. [£] generates Hy(X,Z)
» May not be of minimal genus, so only gives upper bound
» Assume L is non-split so X is a K(m1(X), 1)-space



Getting a well-behaved 2-complex

Want to find 1-vertex 2-complex C s.t.
» C is constructed from a presentation of 1 (X)
» C — X and X def. retracts to C.

» The homology class of every 1-cell is s or t



Some examples

» Wirtinger presentation
» Bridge presentations



Lifting C

C lifts nicely to p~1(C) = C
» 0O-cells lift to Z2 lattice

» 1-cells lift to horizontal or vertical edges connecting lattice
points

» Abelianized Fox derivatives (plus more) tell us how to attach
2-cells



lllustrations

Q>



[llustrations




Finding a generator

» Alexander matrix describes the boundary map 0 : 62 — a

> Ker(d) = Ha(C,Z) = Ha(X, Z).

» Can find a generator of kernel by reducing it to reduced row
echelon form



Finding a surface

» Generator is 2-cycle ¥
> > is not a surface...

..but we may find a surface ¥’ € N(C) C X that carries the
same homology class

v

» There is some choice involved in correcting S to a surface

v

Can identify it by Euler Characteristic



Thank You!

£ DA



Annular Rasmussen invariants: Properties and 3-braid

classification

Gage Martin

Boston College

December 7th, 2019
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Land Acknowledgement

As part of reflecting on the continuing legacy of colonialism and genocide
here in the United States we should acknowledge that we are meeting on
the stolen territory of the Muscogee people.
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Annular Links

Gage Martin (Boston College) Annular Rasmussen invariants December 7th, 2019



Annular Links

An Annular Link

Gage Martin (Boston College) Annular Rasmussen invariants December 7th, 2019



Filtrations on Khovanov-Lee homology

@ Khovanov-Lee homology carries a Z filtration used by J. Rasmussen
to define the s invariant.
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Filtrations on Khovanov-Lee homology

@ Khovanov-Lee homology carries a Z filtration used by J. Rasmussen
to define the s invariant.

@ Working with an annular link adds an additional Z filtration on
Khovanov-Lee homology.

Gage Martin (Boston College) Annular Rasmussen invariants December 7th, 2019 4/10



What can you do with a Z & Z filtered complex?

@ From knot Floer homology there is Tk(t) by Ozsvath-Stipsicz-Szabd
and Livingston.
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What can you do with a Z & Z filtered complex?

@ From knot Floer homology there is Tk(t) by Ozsvath-Stipsicz-Szabd
and Livingston.

e From annular-Khovanov-Lee homology there is d¢(L) by
Grigsby-A. Licata-Webhrli
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What can you do with a Z & Z filtered complex?

@ From knot Floer homology there is Tk(t) by Ozsvath-Stipsicz-Szabd
and Livingston.

e From annular-Khovanov-Lee homology there is d¢(L) by
Grigsby-A. Licata-Webhrli

@ Variants of this construction have been used by many people to define
invariants of links, including Chakraborty, Lewark-Lobb,
Sarkar-Seed-Szabd, and Truong-Zhang.

Gage Martin (Boston College) Annular Rasmussen invariants December 7th, 2019 5/10



Why should we care about the d; invariant?
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Why should we care about the d; invariant?

o do(L) =s(L)—1
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Why should we care about the d; invariant?

o do(L) =s(L)—1

@ di(L) is an annular concordance invariant
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Why should we care about the d; invariant?

o do(L) =s(L)—1
@ di(L) is an annular concordance invariant

° dt(B) can detect right-veering, non-quasipositive braids

Gage Martin (Boston College) Annular Rasmussen invariants December 7th, 2019 6/10



Why should we care about the d; invariant?

do(L) = S(L) -1
d:(L) is an annular concordance invariant

d¢(3) can detect right-veering, non-quasipositive braids

There are connections between dt(ﬁ) and transverse invariants of B
defined from Khovanov homology.

Gage Martin (Boston College) Annular Rasmussen invariants December 7th, 2019 6/10



Restrictions on dt(g) and Tk(t)

For a fixed braid index n, there are only finitely many possibilities for dt(B)
and a method for listing them all, where 3 is any n-braid.

Gage Martin (Boston College) Annular Rasmussen invariants December 7th, 2019 7/10



Restrictions on dt(//i\) and Tk(t)

For a fixed braid index n, there are only finitely many possibilities for dt(B)
and a method for listing them all, where 3 is any n-braid.

For a fixed concordance genus m, there are only finitely many possibilities
for Tk(t) and a method for listing them all, where K is any knot of
concordance genus m.

Gage Martin (Boston College) Annular Rasmussen invariants December 7th, 2019 7/10



Computation of d; and s invariants of 3-braids

-~ o~

For any 3-braid 3, it is possible to explicitly read off di(/3) and s(3) from a
distinguished representative of the conjugacy class of (3.

Gage Martin (Boston College) Annular Rasmussen invariants December 7th, 2019 8/10



Proof Sketch

@ Express 3-braids in their Murasugi conjugacy form
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Proof Sket

@ Express 3-braids in their Murasugi conjugacy form
o Find enough 3-braids where it is “easy” to compute the d; invariant

@ Use cobordisms to compute the d; invariants of all other 3-braids

Gage Martin (Boston College) Annular Rasmussen invariants December 7th, 2019 9/10



Thank You
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Recognizing Pseudo-Anosov Braids
in Out(1W,,)

Rylee Lyman, Tufts University

Tech Topology IX, Dec 7 2019
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What is Out(1/,,)?

The free Coxeter group of rank n:

W, = (Z)22)*" = (a1, ...,an | a? = 1).

As usual,
Out(W,,) = Aut(W,,)/ Inn(W,,).

“Nielsen-like” generators:
a; — aj
‘ J aj = a;G50;4

A ' o X {ak > ay k#j.
ap > ar k#1i,j



A Classification Theorem

Theorem (L, '19)

Every outer automorphism ¢ € Out(W,,) may be represented
by a homotopy equivalence f: G — G of a W,-orbigraph with
special properties called a relative train track map.

If @ is (fully) irreducible, the special homotopy equivalence is
nicer and is called a train track map.



A Classification Theorem

Theorem (L, '19)

Every outer automorphism ¢ € Out(W,,) may be represented
by a homotopy equivalence f: G — G of a W,-orbigraph with
special properties called a relative train track map.

If @ is (fully) irreducible, the special homotopy equivalence is
nicer and is called a train track map.

Builds on work of Bestvina, Feighn and Handel for Out(F},).

MY -\
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A Train Track Map

A homotopy equivalence f: G — G is a train track map when
for each edge e € G, the kth iterate f*|, is an immersion for all
k> 1.



The Project

Pseudo-Anosov mapping class is to Pseudo-Anosov
homeomorphism as fully irreducible outer automorphism is
to train track map.
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The Project

Pseudo-Anosov mapping class is to Pseudo-Anosov
homeomorphism as fully irreducible outer automorphism is
to train track map.

Theorem (Bestvina—Handel '92, Brinkmann ’99)

If ¢ € Out(F,) is fully irreducible, it is either hyperbolic or o*
can be represented as a pseudo-Anosov homeomorphism of a
surface with one boundary component for some k > 1.

Braid group is to mapping class group as Out(1/,,) is to
Out(F,).

Theorem (L, In Progress)

If o € Out(W,,) is fully irreducible, it is either hyperbolic or ©*
can be represented as a pseudo-Anosov braid on an orbifold
with one boundary component with orbifold fundamental group
W, for some k > 1.



Braids As Mapping Classes
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Following A Curve
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The Example



A construction of pseudo-Anosov
homeomorphisms using positive twists

Yvon Verberne - University of Toronto




Pseudo-Anosov: No power of f maps any curve back to itself




Pseudo-Anosov: No power of f maps any curve back to itself

Prior Constructions:




Pseudo-Anosov: No power of f maps any curve back to itself

Prior Constructions:

Thurston’s Construction




Pseudo-Anosov: No power of f maps any curve back to itself

Prior Constructions:
Thurston’s Construction

Penner’s Construction

Yvon Verberne - University of Toronto



Pseudo-Anosov: No power of f maps any curve back to itself

Prior Constructions:
Thurston’s Construction

Penner’s Construction

Yvon Verberne - University of Toronto

S—

Uses both positive and negative
Dehn twists; uses two multi-twists



Pseudo-Anosov: No power of f maps any curve back to itself

Prior Constructions:

Thurston’s Construction Uses both positive and negative

Dehn twists; uses two multi-twists

S—

Penner’s Construction

Hamidi-Tehrani’s Construction

Yvon Verberne - University of Toronto



Pseudo-Anosov: No power of f maps any curve back to itself

Prior Constructions:

—_—

Thurston’s Construction Uses both positive and negative

Dehn twists; uses two multi-twists

S—

Penner’s Construction

Hamidi-Tehrani’s Construction

Uses a sufficiently high number of positive Dehn twists;
uses two multi-twists

Yvon Verberne - University of Toronto



Pseudo-Anosov: No power of f maps any curve back to itself

Prior Constructions:

—_—

Thurston’s Construction Uses both positive and negative

Dehn twists; uses two multi-twists

S—

Penner’s Construction

Hamidi-Tehrani’s Construction

Uses a sufficiently high number of positive Dehn twists;
uses two multi-twists

New Construction:

Theorem (V.):

Pseudo-Anosov construction using only positive twists

Yvon Verberne - University of Toronto



Pseudo-Anosov: No power of f maps any curve back to itself
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Pseudo-Anosov: No power of f maps any curve back to itself
Theorem (V.): Pseudo-Anosov construction using only positive twists

Twist red curves
Twist blue curves
~+ pseudo-Anosov map ¢

Yvon Verberne - University of Toronto



Pseudo-Anosov: No power of f maps any curve back to itself
Theorem (V.): Pseudo-Anosov construction using only positive twists

Twist red curves p \ \ p
Twist blue curves <
~+ pseudo-Anosov map ¢ 50,6 & > 20,6

Yvon Verberne - University of Toronto
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Theorem (V.): pseudo-Anosov construction using only positive twists

Add in new curve

Twist red curves

Even coloring plus puncture Twist blue curves

splitting ~~ pseudo-Anosovs
on punctured spheres ~ pseudo-Anosov map

Twist magenta curve

Yvon Verberne - University of Toronto
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Theorem (V.): pseudo-Anosov construction using only positive twists

Theorem (V.): this construction provides examples of pseudo-Anosov maps
which are unique from both Penner and Thurston’s constuctions

Let’s “split” the puncture Add in new curve
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Theorem (V.): pseudo-Anosov construction using only positive twists

Theorem (V.): this construction provides examples of pseudo-Anosov maps
which are unique from both Penner and Thurston’s constuctions

Let’s “split” the puncture Add in new curve

Twist red curves, twist blue curves, twist magenta curve,
twist green curve ~» pseudo-Anosov map

Yvon Verberne - University of Toronto



Diagrams of x-trisections
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Trisections of 4-manifolds

Kirby and Gay proved that any smooth 4-manifold has a trisection.
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Trisections of 4-manifolds

A trisection of X can be decoded using a diagram (%; «, 3,7).
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Trisection diagrams

Classically, each pair of loops («, ), (5,7) and (v, «) is
slide-diffeomorphic equivalent to the standard picture:
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Trisection diagrams of small genus

“

SixS3

Ssz2 _sz

Zupan and Meier proved in 2014 that these are the only irreducible
trisections of genus at most two.
The classification of genus three trisections remains open.
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Problems about diagrams

In general, it is not obvious what 4-manifold a
given trisection diagram represents.
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Farey trisections

Take a triplet of irreducible fractions % eQu {%} satisfying

det (5 &) = +1. Consider the diagram D(2, 22, %) as below
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Farey trisections

Take a triplet of irreducible fractions % eQu {%} satisfying

det (5 &) = +1. Consider the diagram D(2, 22, %) as below

Problem: How many distinct 4-manifolds/trisections are among the

i pP1 P2 P3Y)?
diagrams D(}, 22, 22"
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*-trisection diagrams

In a joint work (Arxiv:1911.06467) with Jesse Moeller, we can loosen the
definition of trisection of a 4-manifold to solve the Farey trisections
problem using a simple diagramatic perspective.
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*-trisection diagrams

Diagram-wise, x-trisections are allowed to have non-isotopic loops of
distinct colors which are disjoint from each other.
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*-trisection diagrams

Diagram-wise, x-trisections are allowed to have non-isotopic loops of
distinct colors which are disjoint from each other.

Each pair (o, 8), (8,7) and (7, «) is slide-diffeomorphic equivalent to the
standard picture:

Given a %-trisection diagram (X; a, 3,7), the cardinalities ||, |5
might not be the same.
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Suppose det (¢ ¢ ) = %1 for all pairs (i, ).
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Suppose det (& & ) = =1 for all pairs (i, ).
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Farey trisections

Suppose det (§ ¢ ) = +1 for all pairs (i, ).

= 1) \Uy )
e

= [CP? — (loop)] Ur S® x D?
—=CP?#(S?-bundle over 52)

With a bit more work, we can prove that any two diagrams D(%, %, %
for the same 4-manifold are indeed slide equivalent.
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Thank you for your attention!
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