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Square-tiled Surfaces (STSs)

Finite collection of axis parallel Euclidean unit
squares, glued edge-to-edge via translations.
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Cone points

STSs are flat except for finitely many points,
called cone points [/ singularities with angle
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Holonomy Examples
Hol(T?) = {(», q) € Z*| ged(p,q) = 1} =: RP



Holonomy Examples
Hol(T?) = {(», q) € Z*| ged(p,q) = 1} =: RP

But not the case for the following surface:




Random STS model

STS with n labeled squares <> a pairin S, X Sp,
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Random STS model

STS with n labeled squares <> a pairin Sy, X Sy
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Random STS model

STS with n labeled squares <> a pairin Sy, X Sy
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Topology Result

Theorem 1 (Lechner, S): The expected genus of

a random STS is,
n Inn

2 2

L(genus) = v+ o(1)

Note:

* |n fact, distribution is asymptotically normal.

* My method generalizes to other even-gon-
tiled surfaces.
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Geometry Result

Theorem 2 (S): For a random n-square-tiled
surface, S

Pr(S has Hol(S) =RP) - 1/eas n — o

Pr(S has Hol(S) D RP) - 1 asn — oo



Demo!
(time permitting..)



Thank Youl!
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The Word Problem for Artin Groups

The Word Problem: (Dehn 1910)

Given a group G = (S | R) with a finite generating set S and
relations R, can you decide which words are equivalent to the
identity?

Ashlee Kalauli
The Word Problem for ART A\Z



The Word Problem for Artin Groups

The Word Problem: (Dehn 1910)

Given a group G = (S | R) with a finite generating set S and
relations R, can you decide which words are equivalent to the
identity?

o Example: ART <2\v2>

Ashlee Kalauli

The Word Problem for ART (A,



The Word Problem for Artin Groups

The Word Problem: (Dehn 1910)

Given a group G = (S | R) with a finite generating set S and
relations R, can you decide which words are equivalent to the
identity?

o Example: ART <2\v2>

ART (;\;) = (a, b, ¢ | aba = bab, bcb = cbc, aca = cac)

Ashlee Kalauli

The Word Problem for ART (A4,



A Solution

Theorem (McCammond, Sulway, 2017):

ART(Z\;) is a torsion-free, centerless group with a solvable word
problem.
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A Solution

Theorem (McCammond, Sulway, 2017):

ART(Z\;) is a torsion-free, centerless group with a solvable word
problem.

ART(A;) = ART*(Ap,w) <  GAR(Ay,w)
4 ¢

COX(Z;) = Cox(fé\;,w) — CRYST(/Z\;, w)

Ashlee Kalauli
The Word Problem for ART A\Z
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The Word Problem for ART \2
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A Solution
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A New Solution

o This infinite generating set is a poset under left division leading
to a normal form that solves the word problem.
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A New Solution

o This infinite generating set is a poset under left division leading
to a normal form that solves the word problem.

o GOAL: Write finite state automata that will solve the word
problem for ART <A2> with its classical presentation.

Ashlee Kalauli
The Word Problem for ART A\Z
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Thank You!

Mahalo!
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Small Seifert Fiber Spaces

Notation

Let 52("‘1 3, 32) be the Seifert fiber space with base orbifold S?

and 3 critical fibers with corresponding Seifert invariants 3+, 32, 32
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Small Seifert Fiber Spaces

Notation

Let 52("‘1 3, 32) be the Seifert fiber space with base orbifold S?

and 3 critical fibers with corresponding Seifert invariants 3+, 32, 32
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g 0 2 _ng 2 ay
Figure 1: A surgery description of S (%, F ﬁ—i)



Surgery Questions

Question 1
Which 52(%, %, %) can be obtained by 0O-surgery on a knot in

S3?



Surgery Questions

Question 1
Which 52(%, %, %) can be obtained by 0O-surgery on a knot in

G5
Question 2
i 2(1 o o3 ' L
What obstructions are there to S ([317 5 B3) being O-surgery on a
knot in 37



Torus knots have Seifert fibered complement. In particular, by
work of Moser (1971), O-surgery on a torus knot is Seifert fibered.



Torus knots have Seifert fibered complement. In particular, by

work of Moser (1971), O-surgery on a torus knot is Seifert fibered.
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Theorem (Ichihara - Motegi - Song 2008)
There exists an infinite family of hyperbolic knots K,, with small

Seifert fibered 0-surgery, where n € Z\{0, -1, —2}.

Figure 2: The knot K, is the image of blue curve after performing the
corresponding surgeries on the other 3 link components.

—(2n+1)+ —2n1+2
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Example (n =1)

Figure 3: After performing surgery on the link to the left, the image of
the blue curve becomes K; C S3.






Proposition (J. 2019)
There exists an infinite two parameter family of knots K, 5

(extending the I-M-S knots) with small Seifert fibered 0-surgery.

Figure 4: The knot K, , is the image of blue curve after performing the
corresponding surgeries on the other 3 link components. Here, m,n € Z
such that n ¢ {0,—~1}, m#0, 1+ m+n # 0, and (m — n)? divides
(14+ m+ n). Note, Kni1.n = Kp.

(m-n)?
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Obstructions

Basic Algebraic Topological Obstructions
If Y is obtained by 0-surgery on a knot in S3, then 71(Y) has

weight 1, i.e. m1(Y) is normally generated by a single element.
Also, Hi(Y;Z) = Z.
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invariants, then it is not obtained by surgery on a knot in S3.



Obstructions

Basic Algebraic Topological Obstructions
If Y is obtained by 0-surgery on a knot in S3, then 71(Y) has

weight 1, i.e. m1(Y) is normally generated by a single element.
Also, Hi(Y;Z) = Z.

Rohlin Invariant

Theorem (Hedden - Kim - Mark - Park 2018)
If an integral homology S* x S? has two non-trivial Rohlin

invariants, then it is not obtained by surgery on a knot in S3.

Theorem (Hedden - Kim - Mark - Park 2018)

For all positive integers k, 52(—%, _SII‘H, —_186k/<_+12) is irreducible,

has weight 1 fundamental group, and cannot be obtained by
0-surgery on a knot in S3.



Obstructions

Heegaard Floer Homology

Theorem 1 (Ozsvath - Szabé 2001)
If Y is obtained by 0-surgery on a knot in S3, then

[y
—

5 < d_y155(Y) and dijp(Y) < 5 (1)



Obstructions

Heegaard Floer Homology

Theorem 1 (Ozsvath - Szabé 2001)
If Y is obtained by 0-surgery on a knot in S3, then

[y
—

5 < d_1/2(Y) and dip(Y) < 5 (1)
Unfortunately, by the following theorem, we cannot use this to
obstruct a Seifert fibered homology S x S? from being 0-surgery
on a knot in S3.

Theorem 2 (Hedden - Kim - Mark - Park 2018)

Suppose M is homology cobordant to a Seifert fibered homology
St x S2. Then, (1) also holds for M.



Obstructions

Work in Progress
A potential strategy to obtain another obstruction:
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e We can prove an analog of the d-invariant bounds from
Theorem 1 for involutive Heegaard Floer homology.
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Obstructions

Work in Progress
A potential strategy to obtain another obstruction:

e We can prove an analog of the d-invariant bounds from
Theorem 1 for involutive Heegaard Floer homology.

e However, the analog of Theorem 2 is not clear in the
involutive setting. One may hope that, in fact, the analog of
Theorem 2 for involutive Heegaard Floer homology does not
hold. This would then provide an obstruction to a Seifert
fibered homology S* x S? being 0-surgery on a knot in S3.

10
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Can we find the exact number of tight contact structures on a
given 3 manifold?
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Can we find the exact number of tight contact structures on a
given 3 manifold?

Not always!

Kiirsat Yilmaz The University of Toledo, Ohio TIGHT CONTACT STRUCTURES ON THE BRIESKORN HO



Constructing and Counting the Tight Contact Structures

Theorem (Mark, Tosun 2018)

The Brieskorn homology spheres ¥(2,3,6n+ 1) has exactly two
tight contact structures for any n > 1.

Kiirsat Yilmaz The University of Toledo, Ohio TIGHT CONTACT STRUCTURES ON THE BRIESKORN HO



Constructing and Counting the Tight Contact Structures

Sketch of Proof:

We start with the basic surgery description of ¥(2,3,6n+1). To
find the Seifert invariants we begin with solving the equation

3(6n—+1)by +2(6n+1)by +6b3 = 1

for the integers b1, by and bs. To make it simple let us take
b1 = 1,b2 =—1and b3 = —n.

Kiirsat Yilmaz The University of Toledo, Ohio TIGHT CONTACT STRUCTURES ON THE BRIESKORN HO



Constructing and Counting the Tight Contact Structures

1
n

o

1%

=

2 3 _ 6n+1

n

Figure 1: Surgery description of ¥(2,3,6n+1)
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Constructing and Counting the Tight Contact Structures

Figure 2: Non-isotopic tight contact structures on ¥(2,3,6n+1)
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How do we find the upper bound?
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How do we find the upper bound?

By using Honda's bypass technique!
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Constructing and Counting the Tight Contact Structures

T

1
Slope =5

Figure 3: Slope of the dividing curves of abstract solid torus
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Constructing and Counting the Tight Contact Structures

The attaching maps are can be given as

2 -1 31 _ (6n+1 6n—5
Al_(l 0>’A2_<—1 O>’A3_<—n —n+1>'
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Constructing and Counting the Tight Contact Structures

The attaching maps are can be given as
2 -1 3 1 6n+1 6n—5
Al_(l 0>’A2_<—1 o)’A3_< —n —n+1>'

Then the corresponding slopes on the boundary of V;'s will be

n no nn3+n—1

Tom 1% T 3m,+ 1P T T (ent ) t6n-5

S1

Kiirsat Yilmaz The University of Toledo, Ohio TIGHT CONTACT STRUCTURES ON THE BRIESKORN HO



Constructing and Counting the Tight Contact Structures

Vi Va

Figure 4: The dividing curve (dashed lines) configuration of the annulus
o
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Constructing and Counting the Tight Contact Structures

i

Vs

=1MuUTLUA

Va

Figure 5: This figure illustrates the isotopy between d(M\ (V41U Vo U .«7))
and d(M\ V3).
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Constructing and Counting the Tight Contact Structures

[6,11)8]

After configurations we end up with the slopes s; = % and s = —

corresponds to slopes nil = —% and niz = —% respectively.
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Constructing and Counting the Tight Contact Structures

After configurations we end up with the slopes s; = % and s = —

corresponds to slopes nil = —% and niz = —% respectively.

[6,11)8]

On the other hand, the slope s3 = —% corresponds in coordinates
of dV3 to —EL which has continued fraction [—2,...,—2] (n-times
—2) and by the results of Honda we know that the solid torus
satisfying this boundary conditions admits exactly two tight
contact structures.

Kiirsat Yilmaz The University of Toledo, Ohio TIGHT CONTACT STRUCTURES ON THE BRIESKORN HO
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Theorem [M.](paper in progress)

There exists a monoidal functor CF~ : Tan — 2 — o0 from the category
of tangles to a category of "2-modules”, which recovers (a stabilized
version of ) gCFL=(S3, L) for links in S3.

lan Montague (Brandeis University) Tangle Invariants December 8th, 2019 2/18



The Monoidal Category of Tangles

The Category Tan

Composition in Tan is given by vertical stacking (*):

?
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w |
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The Monoidal Category of Tangles (cont.)

The Category Tan (cont.)

Tan is also a monoidal category under horizontal concatenation II:
° 9 )i
Dl B by
W s = wu | U

W

lan Montague (Brandeis University) s December 8th, 2019 4/18



Tangle Invariants As Functors

Definition

For our purposes, a link invariant is map F : Link — R-Mod,
(e.g., R = Z, IFQ, ]FQ[U])
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Tangle Invariants As Functors

Definition

For our purposes, a link invariant is map F : Link — R-Mod,
(e.g., R = Z, ]F2, ]F2[U])

Categorification

Let ®Bimo0 be the category where:
@ Ob(Bimod) = set of dg-algebras A over R,
@ Mor(A, B) = set of dg-bimodules over (A, B).

A categorification of F : Link — R-Mod is a functor § : Tan — Bimod
such that:

e §(0)=R
o H.(F) = F when restricted to Link C Tan.

lan Montague (Brandeis University) Tangle Invariants December 8th, 2019 5/18



What about the Monoidal Structure?

When does a categorified tangle invariant extend to a monoidal functor
T (ZTan, 1) — (Bimod, ®)?

lan Montague (Brandeis University) Tangle Invariants December 8th, 2019 6/18



What about the Monoidal Structure?

When does a categorified tangle invariant extend to a monoidal functor
T (ZTan, 1) — (Bimod, ®)?

Answer

It doesn't in general: F(m) ® §(n) 2 F(m + n) for most tangle invariants
arising from Floer homology (or Khovanov homology) :'(

lan Montague (Brandeis University) Tangle Invariants December 8th, 2019 6/18



Categorification (cont.)

Let's extend our TQFT down one more level:

We can replace Bimod with a (2-)category 2 — 9tod, endowed with a
more suitable monoidal structure.

lan Montague (Brandeis University) Tangle Invariants December 8th, 2019 7/18
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2-Algebras and Algebra-Bimodules

2
]~ ]
J
mlm Gl A ¥]
2
FlrEL A ] [F]
)
A |¥]
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Morphisms in the Category 2 — 9100

2
IWI ; I[\I
J
EY N § 1
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Composition in 2 — Mod

3 M @
Bz & 3l A e
b3 N 4
— S

L= HMod.
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Monoidal Product in 2 — 90to0
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Knot/Link Floer Homology

Knot/Link Floer Homology

HFK=(S3,K) = H.(gCFK~(S3, K))

is an Fp[U]-module.

HFL=(S3,L) = H.(gCFL=(S3, L))

is an Fp[Uy, . .., Ug]-module.

lan Montague (Brandeis University) Tangle Invariants December 8th, 2019 13/18



Tangle Floer Homology

Some Heegaard Floer Tangle Invariants

@ Sutured:
o [Alishahi-Eftekhary,’ 16]
o [Zibrowius,’ 16]
@ Glue Under Vertical Composition:
o [Petkova-Vértesi,’ 14]
o [Ozsvath-Szabd,’ 17/'18]

lan Montague (Brandeis University) Tangle Invariants December 8th, 2019 14 /18



Tangle Floer Homology (cont.)

e Enhance Zibrowius’ construction using Alishahi-Eftekhary’s
construction to recover gCFL™ instead of CFL.

@ Refine this construction so it satisfies the vertical concatenation
properties of the Petkova-Vértesi and Ozsvath-Szabé tangle
invariants, i.e., defines a functor Tan — Bimo?.

v
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Tangle Floer Homology (cont.)

e Enhance Zibrowius’ construction using Alishahi-Eftekhary’s
construction to recover gCFL™ instead of CFL.

@ Refine this construction so it satisfies the vertical concatenation
properties of the Petkova-Vértesi and Ozsvath-Szabé tangle
invariants, i.e., defines a functor Tan — Bimo?.

@ Solving right-hand side of the equation

{bordered sutured Floer homology [Zar 11]}
+{cornered Heegaard Floer homology [DLM 13]}

= {cornered sutured Floer homology},

enhance the above tangle invariant to a monoidal functor
Tan — 2 — Noo.

v

lan Montague (Brandeis University) Tangle Invariants December 8th, 2019 15/18



Tangle Floer Homology (cont.)

Theorem [M.] (paper in progress)

There exists a monoidal functor CF~ : Tan — 2 — 9od which recovers (a
stabilized version of) gCFL~(L, S3) for links in S3.

lan Montague (Brandeis University) Tangle Invariants December 8th, 2019 16 /18



Future Research Directions

Other Invariants

Is it possible to construct cornered versions of the Ozsvdth-Szabé or
Petkova-Vértesi HF tangle invariants?

v

Contact Geometry
Using Honda-Kazez-Mati¢'s EH invariant in SFH we should be able to
define a (relative) LOSS invariant for Legendrian/transverse tangles in
S2x 1.
@ How does the LOSS invariant behave under local modifications (e.g.,
mutation)?
@ Does this provide a faster way to compute the LOSS invariant than
existing methods (e.g., grid homology)?

lan Montague (Brandeis University) Tangle Invariants December 8th, 2019 17 /18



Thanks!
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Mapping Class Group Mod(S)

 Mapping Class Group Mod(S) = {S — S:orientation preserving homeomorphism}/isotopy
[Nielsen-Thurston Classification, 1988]
1. Periodic Rotation, Reflection... 2. Reducible Dpehn twist, ...

Locally..
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Mapping Class Group ~ Curve Graph

 Mod(S) actson C(S)!
For f € Mod(S),

N (< =) N

by homeomorphism by isometry  ('(S)

« Stable Translation Length
For f € Mod(S), define the stable translation length of f as:

I (f) = liminf decv.f n(v)),

n—00 n

where v is any vertex of C(S). (Note: [-(f) is independent to choice of v)
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Earlier Works for [-(f) when S is non-sporadic

Sporadic surface : either [a sphere with 0 — 3 punctures] or [a torus with 0 — 1 punctures]

-For non-sporadic surfaces:

| Theorem(Masur-Minsky, 1998). Any pA map has a quasi-geodesic axis in curve graph.
—That is, for any map f € Mod(S), f acts on a quasi-geodesic in C(S), by translation.

I Corollary. I-(f) > 0 iff f is pA.
-Bowditch further strengthened this result:

I Theorem(Bowditch, 2008). There exists a constant M = M(S) only depending on S,
such that I-(f) is rational with the denominator bounded above M.

-Algorithmic approaches to calculating stable translation lengths:
Shackleton(2012), Webb(2015), and Bell-Webb(2016; Polynomial-time algorithm)

But NO literature is found with analogous result for S = T(torus).



Theorem(Baik-Kim-K.-Shin 2019).
Any Anosov map has a geodesic axis in the curve graph.

— That is, for any Anosov map f € Mod(T),
there exists a bi-infinite geodesic in C(T) on which f acts by translation.




Theorem(Baik-Kim-K.-Shin 2019).
Any Anosov map has a geodesic axis in the curve graph.

— That is, for any Anosov map f € Mod(T),
there exists a bi-infinite geodesic in C(T) on which f acts by translation.

| Corollary. i () € Z* for any Anosov map f.

+Since the proof is constructive,
We devised a polynomial-time algorithm to calculate I (f).

Available @ http://samkwak.info/research
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Idea of Proof



- (1) Vertices

p

Q (p,q)-curve : @

q
Simple Closed Curve on Torus
=(p, q)-curve with relatively prime p,q




Curve"Grapirof Torus - (1) Vertices

@ O{;) Q (v, q)-curve : @
q
Simple Closed Curve on Torus
=(p, q)-curve with relatively prime p,q
(1,0) (1,1) (1,2)

- Vertices of C (T)

1
O O Q = QUG




Curve Graph of Torus - (2) Edges

v /ﬁ |(p,q)-curve N (r,s)-curve| = |ps — qr|
T -

\ 7

& (3,2)-curve intersects at one point.



Curve Graph of Torus - (2) Edges

f |(p,q)-curve N (r,s)-curve| = |ps — qr|
: p—

.
= : ‘ - We join vertices £ and -

_— il q S

& (3,2)-curve intersects at one point. If and Only If |pS — qr|—1.



~.Curve Graph of Torus = Farey Graph!

Identify C(T) with Farey Graph F!

/Vertices = QU {%} h

Edges = Between S’ E

with (|ps — qr| =

>




-ldentify Anosov f € Mod(T) with hyperbolic f € PSL,(Z).
-Embed F = C(T) into Hyperbolic plane H.

-3! f-Invariant axis in H.



-ldentify Anosov f € Mod(T) with hyperbolic f € PSL,(Z).
-Embed F = C(T) into Hyperbolic plane H.

-3! f-Invariant axis in H. '
-3! f-Invariant ladder L in F.

-3 f-Invariant geodesic P in L.

Ladder



-ldentify Anosov f € Mod(T) with hyperbolic f € PSL,(Z).
-Embed F = C(T) into Hyperbolic plane H.

-3! f-Invariant axis in H. '
-3! f-Invariant ladder L in F.

-3 f-Invariant geodesic P in L.

-Ladder Is geodesically convex.

-P Is f-Invariant geodesic in F.
-Q.E.D.

Ladder
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Where do they appear?

Definition 1 o
C is exotic <= 3} (D?,S') < (C,0_C)

Question 1
(Open) When is the Casson handle corresponding to a tree exotic?



An Observation:
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Theorem 1
Tree(CY) < Tree(C?) = C? — C1



An Observation:

Theorem 1
Tree(C) < Tree(C?) = C? < C! (Yes, this looks backwards)



An Observation:

Theorem 1
Tree(CY) < Tree(C?) == C? < C! (Yes, this looks backwards)

Corollary 1
One branch of C is exotic = C is exotic.
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The Casson Tower Factory




The Casson Tower Factory

Theorem 2
CTF(9n-3) < E(n)#CP"



The Casson Tower Factory

CFT(M)e

Theorem 2
CTF(9n-3) < E(n)#CP"

Corollary 2
C™ is exotic. (This takes a little work:.)

+
(")



The New Casson Tower Factory

CFT(n,m™)3




The New Casson Tower Factory

CFT(‘“)W‘)g

(n+m)

Proposition 1

CTF(n, m) contains the first n + m stages of every linear Casson
handle with n positive and m negative plumbings.
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Research Objective

Construct smooth, closed, simply-connected X (k) such that:
> CTF(k, k) — X(k)
» Twisting M — CTF(k, k) — X(k) changes the smooth
structure on X(k).

= All linear Casson handles are exotic.

== All Casson handles are exotic.



Thank you!



Finite Rigid Sets In
the Arc Complex
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Setting

S a closed, connected, orientable, finite-type
surface with marked points




Arcs

Arcs on S are essential paths between marked
points with embedded interiors, up to isotopy.




The Arc Complex

The arc complex A(S) of S is a simplicial
complex
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The Arc Complex

The arc complex A(S) of S is a simplicial
complex

evertices ¢<> arcson S
* k-simplices <> k + 1 disjoint arcs

A(S)




Maps of the Arc Complex

* A homeomorphism f:§ -» S
* sends arcs to arcs
« sends disjoint arcs to disjoint arcs

» Thus, we can define an induced map
f € Aut(A(S)).



Rigidity of the Arc Complex

Theorem (Irmak-McCarthy, 2010)
Every automorphism
A(S) = A(S)

IS iInduced by a homeomorphism § - §,
unique up to Isotopy in most cases.



Rigidity of the Arc Complex

Theorem (Irmak-McCarthy, 2010)
Every automorphism
A(S) = A(S)

IS iInduced by a homeomorphism § - §,
unique up to Isotopy in most cases.

Corollary: In non-exceptional cases,
Mod*(S) = Aut(A(S)).



Strengthening

Theorem (S., 2019)
Every isomorphism
A(S) » A(S)

IS Induced by a homeomorphism § - 5/,
unique up to Isotopy in most cases.



Strengthening

Theorem (S., 2019)
Every isomorphism
A(S) » A(S)

IS Induced by a homeomorphism § - 5/,
unique up to Isotopy in most cases.

Corollary: A(S) = A(S") implies § = §'.



Main Theorem

Theorem (S., 2019)

There is a finite subcomplex X € A(S) such
that any injection

X - A(S)
IS Induced by a homeomorphism § - §’,

unique up to isotopy in most cases, provided
dim(A(S)) = dim(A(S")).*

*S # Sp3



Proof |deas

*Include a triangulation in X
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Proof |deas

*Include a triangulation in X

*Include arcs to guarantee each triangle maps
to a triangle
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Proof |deas

*Include a triangulation in X

*Include arcs to guarantee each triangle maps
to a triangle

*Include arcs to guarantee orientations are
preserved

i (D TR

o




Thank you for
your time! .




