Isotopy and equivalence of huots in 3-manitoles
Park joint 4/ Aceto, Bregman, Davis, Ray
A knot is an embedding of 5^{\prime} into 5^{3} $K, J: S^{\prime} \longrightarrow S^{3}$:

- isotopic: if $\exists 1$-parameter tautly of embeddings

$$
F_{t}: S^{\prime} \hookrightarrow S^{3} \text { st. } F_{0}=k, F_{1}=\sigma
$$

- ambient isotonic: if \exists a 1 -paroon. family of honeowophiens $G_{e}: 5^{3} \simeq 5^{3}$

$$
\text { st. } G_{0}=l d \quad G, \circ K=\sigma
$$

- equivalent: if \exists a homeonophisin $\phi: S^{3} \rightarrow 5^{3}$ st. $\phi \cdot K=\sigma$
$K, U \subset Y$ are isotopic $\underset{\sim}{\rightleftharpoons} K, J \circ Y$ are ambient ard $\stackrel{V}{\Rightarrow} K, T \subset$ Tequivalevt usotery ext. 4 h m $\underset{\sim}{\pi}$
Th [Fisher 60]: Any orientation preserving how no of 5^{3} is votropic to $1 d$

Main $T G^{m}$: Let T be a closed oriented prime 3-manifold
Every pair of equivalent knots in I are isotopic $\Leftrightarrow \operatorname{Mod}(Y)$ is trivial
Moreover, if an orientation preserving ϕ of Y presences the is otopny class of every knot then ϕ is isotopic to ld

Part I:
Th ${ }^{m}$ 1: if ϕ fixes the conjugacy class of every knot K in Y. Than either
(1) ϕ is is ofopic to id
(2) $Y \cong S^{\prime} \times s^{2}$ and ϕ is the Gluck twist

Recall: $\operatorname{Mod}(\zeta) \rightarrow \operatorname{Ouf}(\Gamma) \cong \operatorname{Aut}(\Gamma) / \operatorname{lnn}(\Gamma)$

$$
\Gamma=\pi(\varphi)
$$

If y is irred ucible, than $\operatorname{Mod}(\psi) \hookrightarrow \operatorname{Out}(\sigma)$ if $Y \cong s^{\prime} \nsucc s^{2}$, then $\operatorname{Mod}(c) \cong \mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$
\downarrow

$$
O_{u}+(\mathscr{G}) \cong \mathbb{Z}_{2}
$$

Def ${ }^{n}$: A group is said to have Gross man's property A if every conjugacy class preserving homo omorplism is inner

Thu 1': 3-mfil groups hove prop. A.
Recall G is called residually flite (RF) it

$$
\bigcap_{\substack{H \Delta G \\[G: H]<\infty}} H=\{e\}
$$

Th쓰(Grossman 74):
G is finite ty gan. conjugacy sep.
prop $A \Rightarrow \operatorname{Out}(G)$ is RF
－Hyp．（and $\frac{\text { also }}{\text { non－prime }}$ ）hare Prop A［Minayon－Osm＇co］
－S．F．w／base orbifuld is not a sphere with 3－cone Nits nor torrs with l－cone point［Alleaby－Kin－tang have prop A ． 88，＇10］

Thin 1＂：the rest hove prop A
Pant II：knots in $S^{1} \times S^{2}$

Tḧㅡㄴ：for each positive integer w ，there exist a winding number w knot K in $S^{\prime} x s^{2}$ st． $K \not ⿻ 丷 ⿻ 二 丨 䒑 i s o G(K)$
Moreover，if $w>1$ and odd，then $K \not \#_{i s i} G(K)$
Rank：$K \cong G(K) \quad 0^{0}$
［K］

consider parallel copy of K (wo linking) λ note $\operatorname{lk}(G(K), G(\lambda))=\omega^{2}$
lemma: Suppose $K \cong$ iso $G(K)$ then there exist a home o

$$
\phi: S^{1} \times S^{2}(K) \xrightarrow{\sim} S^{1} \times S^{2}\left(+\omega^{2}+2 k \omega\right.
$$

for some k
Moreover, $\phi_{x}([h])=[k]+(m+k)[m]$
(1) Casson-Gordon Sig

If $\omega>1$ then $\omega^{2}+2 h \omega=0$

$$
\Rightarrow \omega=-2 k
$$

\therefore winding \# must be odd
(2) d-inut

$$
\begin{gathered}
S^{\prime} \times S_{1}^{2}(K) \underset{\phi}{\underset{ }{\sim}} S^{\prime} \times S^{2},(G(K)) \\
\phi_{x}([h])=[h]+\frac{1}{2} \omega[m]
\end{gathered}
$$

