III Manifolds
A. Definitions and first examples
a topological space M is called an n-manifold if if is

1) Hausdorff recall from homework 2 this
2) $2^{\text {nd }}$ countable means M has a countable basis
3) each point $p \in M$ has an open neighborhood U homeomorphic to on open set V in \mathbb{R}^{n}
Remarks:
4) it can be shown that any n-manifold can be embedded in \mathbb{R}^{N} for some N. (Some people include this in the definition. of manifold, in which case 1) and 2) can be omitted since they are automatic)
5) n-manifolds are metric spaces
6) the idea is than on n-manifold is "locally Euclidean" (conditions 1) and 2) are just to avoid pathological examples)
7) 2-manifolds are also called surfaces
8) the homeomorphism $\phi: U \rightarrow V$ from 3) is called a coordinate chart
examples:
9) $S^{2}=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}+z^{2}=1\right\}$ is a surface (why is if Hausdorff and $2^{\text {nd }}$ countable?)
earlier we discussed coordinate charts of the form $(x, y) \mapsto\left(x, y, \sqrt{1-x^{2}-y^{2}}\right)$ here we give a different approach

given (a, b) in xy-plane
let $l_{(a, b)}=$ line through $(a, b, 0)$ and $N=(0,0,1)$ so $\ell_{(a, b)}$ is parameterized by

$$
\begin{gathered}
s(a, b, 0)+(1-s)(0,0,1) \\
11 \\
(5 a, s b, 1-s)
\end{gathered}
$$

$f_{(a, b)} \wedge s^{2}: \quad(a s)^{2}+(b s)^{2}+(1-s)^{2}=1$

$$
\left(a^{2}+b^{2}+1\right) s^{2}-2 s=0
$$

so intersection happens when $s=0$ or $s=\frac{2}{1+a^{2}+b^{2}}$ so $l_{(a, b)} \cap S^{2}$ at a unique point other than N lie at $\left(\frac{2 a}{1+a^{2}+b^{2}}, \frac{2 b}{1+a^{2}+b^{2}}, 1-\frac{2}{1+a^{2}+b^{2}}\right)$
so set $V=\mathbb{R}^{2}$ and $U=S^{2}-\{N\}$
then $\pi_{N}: V \rightarrow U:(a, b) \longmapsto \frac{2}{1+a^{2}+b^{2}}\left(2 a, 2 b, a^{2}+b^{2}-1\right)$ is a continuous map
to see π_{N} a homeomorphism we can construct π_{N}^{-1} exercise: show $\pi_{N}^{-1}(x, y, z)=\left(\frac{x}{1-z}, \frac{y}{1-z}\right)$
π_{N}^{-1} is called stereographic projection and π_{N} is called stereographic coordinates
note: this shows S^{2} is just \mathbb{R}^{2} with one point added ("at infinity")
using $S=(0,0,-1)$ you can get a coordinate chart about N
exercise: Show S^{n} is an n-manifold by writting down stereographic coordinates
2) S^{\prime} is a 1 -manifold consider $\rho: \mathbb{R} \rightarrow S^{\prime}$

$$
x \longmapsto(\cos 2 \pi x, \sin 2 \pi x)
$$

given any $x \in S^{\prime}$ there is a small

nbhd U of x s.t. $P^{-1}(U)=$ union of intervals
p restricted to each of these intervals is a homeomorphism so S^{\prime} is a 1 -manifold
3) $T^{2}=s^{\prime} \times s^{\prime}$ is a surface

$$
\left(x_{0}, y_{0}\right) \in S^{\prime} \times S^{\prime}
$$

x_{0} has a nbhd $I \cong(a, b)$ in s^{\prime}

y_{0} has a nbhd $J \cong(c, d)$ in S
so $\left(x_{0}, y_{0}\right)$ has a nbhd $I \times J$ homeo to $(a, b) \times(c, d) \subset \mathbb{R}^{2}$
exercise: Show that the product of an n-manifold and an m-manifold is an ($n+m$)-manifold
4) T^{2} again
recall from Section II.F, T^{2} is a quotient space of
 where opposite sides are identified
clearly any point $p \in(0,1) \times(0,1)$ has a nbhd homeomorphic to an open set in \mathbb{R}^{2}
now if p is on an edge exercise: $U_{1} \cup U_{2} / \sim \cong$ open ball

(similarly for other edge)
if p is a corner point

so T^{2} is a surface (Why is it Hausdorff and 2 ${ }^{\text {nd }}$ countable?)
5) In Section II.F we saw

exercise: as in example 4) check this is a surface similarly

$$
\Sigma_{g}=\underbrace{\underbrace{\sim}_{\sim} \cdots \underbrace{\text { to }}_{\text {homed }} \text {, }}_{\text {gholes }}
$$

quotient of $4 g-g o n$
6) $T^{3}=s^{1} \times s^{1} \times s^{1}$ is a 3 -manifold (by exercise above)
but also can consider $C=$ cube $=[0,1] \times[0,1] \times[0,1]$

identify opposite sides by translation
exercise: 1) C / \sim is T^{3}
2) Show C / \sim is a 3-manifold like T^{2} in example 4)
7) lens spaces $L(p, q)$
$p>q>0$ rel. prime
let $P=$ "suspension of

$$
L(p, q)=p / \sim
$$

"Lens"
where ~ glues top to bottom after a $\frac{2 \pi q}{p}$ twist
exercise: Show these are 3-manifolds
8) let

let $f: \partial V_{1} \rightarrow \partial V_{2}$ be a homeomorphism
exercise: $M=V_{1} U_{f} V_{2}$ is a 3 -manifold (all oriented, compact 3 -manifolds are obtaried this way!)

A second countable, Hausdorff space M is an n-manifold with boundary if each point $p \in M$ has a nbhd U_{p} homeomorphic to an open set in $\mathbb{R}_{\geq 0}^{n}=\left\{\left(x_{1}, \ldots, x_{n}\right) \mid x_{n} \geq 0\right\}$

the boundary of M is
$\partial M=\{p \in M \mid \rho$ only has nhl homes. to nbhd of $\left(x_{1}, \ldots, x_{1-1}, 0\right)$ in $\mathbb{R}_{\geq 0}^{n}$ and P maps to point with $\left.x_{n}=0\right\}$
the interior of M is

$$
\text { int } M=M-\partial M
$$

Important Facts:

1) no open set in \mathbb{R}^{n} is homeomorphic to an open set in \mathbb{R}^{m} if $m \neq n$
2) no open nbhd of $\left(x_{1} \ldots x_{n}, 0\right)$ in $\mathbb{R}_{\geq 0}^{n}$ is homeomorphic to an open set in \mathbb{R}^{n}
Remarks:
3) \Rightarrow if M is an n-manifold it is not an m-manifold for any $n \neq m$ (if $M \neq \varnothing$)
4) \Rightarrow int $M=\{\rho \in M \mid \rho$ has a nbhd homeo. to an open set in $\left.\mathbb{R}^{n}\right\}$
exercise:
if M is an n-manifold with boundary, then
5) ∂M is an ($n-1$)-manifold
6) int M is an n-manifold
7) $\partial(\partial M)=\varnothing, \partial($ int $M)=\varnothing$, int $(\partial M)=\partial M$, and int $($ int $M)=$ int M
B. 1-manifolds:

Th ${ }^{m}$ 1:
If M is a connected /-manifold, then M is homeomor phic to

1) S' if M is compact and without boundary
2) $[0,1]$ if M is compact and $\partial M \neq \varnothing$
3) $[0,1)$ if M is non-compact and $\partial M \neq \varnothing$, or
4) $(0,1) \cong \mathbb{R}$ if M non-compact without boundary
so we completely understand 1-manifolds!
the proof is not hard and can be found in many books/courses in topology (we skip the proof)
now what are symmetries of compact 1-manifolds (that is what are homeomorphisms)
two homeomorphisms

$$
f_{0}, f_{1}: x \rightarrow x
$$

of a topological space are called isotopic if there is a homeomorphism

$$
F: X \times[0,1] \rightarrow X \times[0,1]
$$

with $F(x, t)=\left(F_{t}(x, t)\right.$ and $F_{0}=f_{0}, F_{1}=f_{1}$
this implies $F_{t}: X \rightarrow X$ is a homeomorphism
so two homeomorphisms are isotopic if you can continuously deform one into the other through homeomorphisms
example: $f_{0}: S^{\prime} \rightarrow S^{\prime}$ identity
$f_{1}: s^{\prime} \rightarrow s^{\prime}$ rotation by π
let $F_{t}=$ rotation by πt

so $F_{t}(x, t)=\left(F_{t}(x), t\right)$ is an
isotopy from f_{0} to f_{1}

lemma 2:

1) any homeomorphism $f:[0,1] \rightarrow[0,1]$ is isotopic to

$$
\begin{aligned}
& \text { id }:\{0,1] \rightarrow[0,1]: x \rightarrow x \text { or } \\
& r:[0,1] \rightarrow[0,1]: x \mapsto 1-x
\end{aligned}
$$

2) any homeomorphism $f: S^{\prime} \rightarrow S^{\prime}$ is isotopic to

$$
\begin{aligned}
& \text { id }: s^{\prime} \rightarrow s^{\prime}:(x, y) \mapsto(x, y) \\
& r: s^{\prime} \rightarrow s^{\prime}:(x, y) \mapsto(x,-y)
\end{aligned}
$$

so we completely understand homeomorphisms of compact
1 -manifolds upto isotopy
an orientation on a 1-manifold is a choice of direction

note: lemma 2 says homeomorphisms of $[0,1]$ or S^{\prime} are isotopic iff they both preserve or reverse orientations
Sketch of Proof:
let $f:[0,1] \rightarrow[0,1]$ be an orientation preserving homeomorphism
note: $f(0)=0, f(1)=1$
set $F_{t}(x)=(1-t) f(x)+t x$
check this gives an isotopy
for $f: S^{\prime} \rightarrow S^{\prime}$ orientation preserving
use rotation of S^{\prime} to isotope f until $f((1,0))=(1,0)$ recall we have a quotient map $q:[0,1] \rightarrow s^{\prime}$ from this we get $\tilde{f}:[0,1] \rightarrow[0,1]$ an orientation preserving homed.

so we have an isotopy $\tilde{F}_{t}:[0,1] \rightarrow[0,1]$ from \tilde{f} to id let $\bar{F}_{t}=q \circ F_{t}:[0,1] \rightarrow S^{\prime}$
since \bar{F}_{t} sends 0 and 1 to same point it induces a map

$$
F_{t}: s^{\prime} \rightarrow s^{\prime}
$$

quotient space theory says F_{t} is continuous and it is clearly a bijection
$\therefore F_{t}$ is a homeomorphism since S 'is compact and Hausdorff (Th $^{\text {m}}$ II. 18)
exercise: think about the orientation reversing case
C. 2-manifolds

Can think of an orientation on a domain in \mathbb{R}^{2} as a (consistent) choice of orientation on a small closed curve at each point image of S^{\prime}

clockwise

 counterclockwise
note: this incluce s an orientation on the boundary
a surface is oriented if given any coordwiate charts $\left\{\phi_{\alpha}: V_{\alpha} \rightarrow U_{\alpha}\right\}_{\alpha \in A}$ such that $\Sigma=\bigcup_{\alpha \in A} U_{\alpha}$ there is a choice of orientations on the V_{α} such that whenever $U_{\alpha} \cap U_{\beta} \neq \varnothing$ we have

the map $\phi_{\beta}^{-1} \circ \phi_{\alpha}: \phi_{\alpha}^{-1}\left(v_{\alpha} \cap v_{\beta}\right) \rightarrow \phi_{\beta}^{-1}\left(v_{\alpha} \cap v_{\beta}\right)$ sends the orientation on V_{α} to the one on V_{β} (note $\phi_{f}^{-1} \cdot \phi_{\alpha}$ sends closed curves to closed curves)
if \sum cannot be oriented it is called non-orientable
examples:

1) the annulus $A=S^{\prime} \times[0,1]$ can be oriented eg

now any coordcriate charts $\phi: U \rightarrow V$ for A we use, to orient V
2) the Mübius band $M=\sqrt{1 / / / 1, \psi}$

exercise: 1) find 2 charts on M so that there is no way to satisfy the orientation condition above (ie rigorously show M is not orientable)
3) Show a surface is not orientable

$$
\Leftrightarrow
$$

it contains a Möbiús band
Given two surfaces Σ_{1} and Σ_{2}
let D_{i} be a disk in Σ_{i}
(if Σ_{i} is oriented give D_{i} orientation induced from Σ_{i} otherwise choose an arbitrary orientation on D_{i})

$$
\text { let } \Sigma_{i}^{0}=\Sigma_{i}-\left(\text { int } D_{i}\right)
$$

let $f: \partial D_{1} \rightarrow \partial D_{2}$ be an orientation reversing homeomorphism $\hat{\partial \Sigma_{1}^{0}} \hat{\partial \Sigma_{2}^{\circ}}$
the connected sum of Σ_{1} and Σ_{2} is

$$
\Sigma_{1} \# \Sigma_{2}=\Sigma_{1}^{0} U_{f} \Sigma_{2}^{0}
$$

example:

exercise: if Σ_{1} and Σ_{2} are oriented then so is $\Sigma_{1} \# \Sigma_{2}$

Th ${ }^{\text {m }}$:
the connected sum of two connected surfaces is well-defined
to see this we need to see that the construction is independent of

1) disks D_{1} and D_{2} used, and
2) homeomorphism f
for these we have
lemma 4: \qquad with this onentation)
Then there is a homeomorphism

$$
\phi:(\Sigma-\operatorname{in}+D) \rightarrow\left(\Sigma-\operatorname{cin} \in D^{\prime}\right)
$$

that preserves the orientation of the boundary
lemma 5: \qquad
let M and N be two manifolds with boundary and

$$
f_{0}, f_{1}: \partial M \rightarrow \partial N
$$

two homeomorphisms.
if f_{0} is isotopic to f_{1}, then $M v_{f_{0}} N \cong M v_{f_{1}} N$
Remark: lemma 4 is similar to Exercise 9 on Homework 3
so should be believable
for the sake of time we skip the proof
Proof of Th^{m} 3:
let $D_{1}, D_{1}^{\prime} \subset \Sigma_{1}$ and $D_{2}, D_{2}^{\prime} \subset \Sigma_{2}$ be disks
and $f: \partial D_{1} \rightarrow \partial D_{2}, f^{\prime}: \partial D_{1}^{\prime} \rightarrow \partial D_{2}^{\prime}$ be orientation reversing homeos from lemma 4 we get homeomorphisms

$$
\phi: \underbrace{\left(\Sigma_{i}-\operatorname{in}+D_{1}\right)}_{\Sigma_{i}^{0}} \rightarrow \underbrace{\left(\Sigma_{1}-\min ^{\prime}+D_{i}^{\prime}\right)}_{\Sigma_{i}^{00}}
$$

and

$$
\psi: \underbrace{\left(\Sigma_{2}-i n+D_{2}\right)}_{\Sigma_{2}^{0}} \rightarrow \underbrace{\left(\Sigma_{2}-i n+D_{2}^{\prime}\right)}_{\Sigma_{2}^{00}}
$$

let $\bar{f}=\psi^{-1} \circ f^{\prime} \circ \phi: \partial D_{1} \rightarrow \partial D_{2} \quad$ note: \bar{f} is an orientation reversing $\partial \hat{\tau}_{1}^{0} \quad \hat{\partial}_{2}^{0}$ homeamordiism
so f and \bar{f} are isotopic by lemma 2
thus $\Sigma_{1}^{0} U_{f} \Sigma_{z}^{0} \cong \Sigma_{1}^{0} U_{f} \Sigma_{z}^{0}$ by lemma 5
but

Φ induces a homeomorphism

$$
\Sigma_{1}^{0} v_{\bar{f}} \Sigma_{2}^{0} \longrightarrow \Sigma_{1}^{\infty 0} v_{f} \Sigma_{2}^{\infty}
$$

on the quotient space (check this!)
to prove lemma 5 we need
lemma 6:
If M is a manifold with boundary, then there is an embedding

$$
\phi:([-1,0] \times \partial M) \rightarrow M
$$

such that $\phi(\{0\} \times \partial M)=\partial M$
for a surface

this is called a collar neighborhood of boundary
for surfaces this is inituctively obvious
this lemma is easy to prove using ideas from graduate math courses, but we will not prove there
Proof of lemma 5:
we need to build a homeomor phism

we want to extend over mini(ϕ) to get a homeomorphism on the quotient space
for this let $F:([0,1] \times \partial M) \rightarrow([0,1] \times \partial N)$

$$
(t, p) \longmapsto\left(t, F_{+}(p)\right)
$$

be the isotopy from f_{0} to f_{1}
note: $G:(\{0,1] \times 2 N) \rightarrow([0,1] \times 2 N)$

$$
(t, p) \longmapsto\left(t, f_{1}^{-1}{ }^{-} o_{t}(p)\right) \text { call this } G_{t}
$$

is an isotopy from $f_{1}^{-1} \cdot f_{0}$ to $\left(y_{\partial N}\right.$
set $\tilde{G}:([-1,0] \times \partial N) \rightarrow([-1,0] \times \partial N)$

$$
(t, p) \longmapsto\left(t, \sigma_{-t}(p)\right)
$$

then we can extend the map above by

$$
\operatorname{in} \phi \longrightarrow \min \phi, \phi^{-1}(\rho), \phi \circ \phi^{2}
$$

you can easily check this gives a homeomorphism

$$
M U_{f_{0}} N \text { to } M U_{f_{1}} N
$$

let's build some surfaces
if M is the Möbius band and D^{2} is a disk, then $\partial M=S^{\prime}$ and $\partial D^{2}=S^{\prime}$ so choose a homeomorphism $\phi: \partial M \rightarrow \partial D^{2}$
just like in earlier examples

$$
P=M v_{f} D^{2}
$$

is a surface (without boundary)
it is called the projective plane
note: P is not orientable
exercise: 1) given
\cdots
s^{2} the unit sphere in \mathbb{R}^{3}

$$
\text { let } r: s^{2} \rightarrow s^{2}:(x, y, z) \mapsto(-x,-y,-z)
$$

say $p_{1}, \rho_{2} \in S^{2}$ are equivalent if $r\left(p_{1}\right)=\rho_{2} \quad\left(\therefore r\left(p_{2}\right)=\rho_{1}\right)$
Show: $S^{2} / \sim \cong P$
2) (I\| D^{2} unit disk in \mathbb{R}^{2}
let $r: \partial D^{2} \rightarrow \partial D^{2}:(x, y) \mapsto(-x,-y)$
detrie \sim on ∂D^{2} as above
Show $D^{2} / \sim \cong P$
3) $P \cong$ (1/ identify edges so arrows match
now define: $\Sigma_{0}=S^{2}$

$$
\begin{align*}
& \Sigma_{1}=T^{2} \\
& \Sigma_{2}=T^{2} \# T^{2}
\end{align*}
$$

$$
\frac{\vdots}{\Sigma_{n}}=\Sigma_{n-1} \# T^{2} \underbrace{6 \infty \ldots \infty}_{\vdots n \text { holes }}
$$

and $N_{1}=P$
x called a "cross cap"

$$
N_{2}=P \# P
$$

$$
N_{n}=N_{n-1} \# P
$$

now given n and m let $D_{1} \ldots D_{m}$ be m disjoint disks in Σ_{n} or N_{n}
then set

$$
\Sigma_{n, m}=\Sigma_{n}-\bigcup_{i=1}^{m} i n+D_{i}
$$

$$
N_{n, m}=N_{n}-\bigcup_{i=1}^{M} D_{i}
$$

Th 7 7:
If Σ is any compact, connected surface (possibly with boundary) then there is some n and m such that Σ is homeomor phic to $\Sigma_{n, m}$ if Σ is orientable, or
$N_{\text {nim }}$ if Σ is not-orientable
Moreover, $\Sigma_{n, m}$ and $\Sigma_{n^{\prime}, m^{\prime}}\left(\right.$ and $N_{n, m}$ and $\left.N_{n^{\prime}, m^{\prime}}\right)$ are homeomorphic $\Leftrightarrow n=n^{\prime}$ and $m=m^{\prime}$
Great theorem! a complete classification of surfaces!
but we would like to do better since right now it is not clear what surface on the list is

Remarks:

1) You can find a "standard" proof of this in most topdogy books/courses so we do not give that proof here but discuss a non-standard "surgery" proof
2) Classification of non-compact surfaces is also known, but very complicated and we will not need it

To improve (and prove) $T^{m} 7$ we need the Euler characteristic
given $k+1$ points, $v_{0}, \ldots v_{k}$, in R^{N} (some large N) in general position (that is no 3 points lie on a line, no 4 on a plane,...)
then a k-simplex is the set

$$
\Delta_{k}=\left\{\lambda_{0} v_{0}+\ldots+\lambda_{k} v_{k} \mid \lambda_{1} \geq 0 \text { and } \lambda_{0}+\ldots+\lambda_{k}=1\right\}
$$

examples:

a face of a simplex is a subsimplex formed by discarding some verticies example:

a simplicial complex is a finite collection of simplicies in some \mathbb{R}^{N} such that
a) If a simplex is in the collection then so are all of its faces
b) If two simplicies intersect then they do so in one common face (and its subfaces)
example:

a triangulation of a topological space X is a simiplicial complex K together with a homeomorphism $h: K \rightarrow X$
example:
T^{2}

Hard Theorem (Radó 1925):
any surface has a triangulation
let K be a simplicial complex (with no n-simplicies for $n \geq k$) the Euler characteristic of k is cell = smiplex

$$
\begin{aligned}
X(k) & =\#\left(0-c e l_{s}\right)-\#\left(1-c e l l_{s}\right)+\#\left(2-c e l_{s}\right)+\ldots+(-1)^{k} \#\left(k-c e l_{s}\right) \\
& =\sum_{i=0}^{k}(-1)^{i} \#(i-c e l l s)
\end{aligned}
$$

if X is a topological space homeomorphic to K then the Euler characteristic of X is

$$
X(X)=X(K)
$$

example:
1)

$$
x\left(s^{2}\right)=4-6+4=2
$$

2)

$$
x\left(s^{2}\right)=5-9+6=2
$$

3) $S^{\prime} \square \cong$

$$
x\left(s^{\prime}\right)=3-3=0
$$

4) $[0,1]$! $x([0,1])=2-1=1$
exercise: a graph is a smiplicial complex with only 0 and 1 -simplicies

graph

tree - no loops in graph (and connected)
5) Show if T is a tree, then $X(T)=1$

Hint: induct on the number of 0 -smiplicies
2) If G is a connected graph, then show

$$
x(6) \leq 1
$$

with equality $\Leftrightarrow G$ is a tree
Remark: It is not clear the Euler characteristic is well-defined for a topological space, but it is!
We will not prove this here, but it is easy once you define homology.
Tying up loose ends:
Recall, we skipped part of the proof of lemma I. 7 about alternating links. We can now complete this using the Euler characteristic. More specifically, that $X\left(s^{2}\right)=2$
We need to show

$$
\left|S_{A}\right|+\left|S_{B}\right|=n+2 \text { if } D \text { alternating }
$$

(see section I.E for notation)

If D is alternating recall we have the checker board coloring of $\mathbb{R}^{2} \subset S^{2}$

this breaks S^{2} into a bunch of disks. the knot diagram is a graph while the disks in the checker board are not 2 -simplicies

we can still compute $X\left(S^{2}\right)=\#$ vertices-\# edges $+\#$ faces recall from Section I.E exercise: Prove this!

$$
\begin{aligned}
& \left|S_{A}\right|=\partial \text { (one of colored regions) } \\
& \left|S_{B}\right|=\partial \text { (other one) }
\end{aligned}
$$

Hint : add verticies and edges
so \#faces $=\left|S_{A}\right|+\left|S_{B}\right|$
let $n=$ number of crossings (ne. vertices)
note there are $2 n$ edges (Why?)
so $2=X\left(s^{2}\right)=n-2 n+\left|s_{A}\right|+\left|s_{B}\right| \Rightarrow\left|s_{A}\right|+\left|s_{B}\right|=2+n$
an embedding $e: M \rightarrow N$ of a compact manifolds is proper if

$$
\begin{aligned}
& e(\partial M) \subset \partial N \text { and } \\
& e(\text { int } M) C \text { int } N
\end{aligned}
$$

example:

not proper

given a proper empedded 1-manifold C in a surface Σ we can cut \sum along C

2.e. consider $\Sigma-C$ then put back two copies of C
denote this by

$$
\sum \backslash C
$$

lemma 8: \qquad then

$$
x(\Sigma \mid c)=x(\Sigma)+x(c)
$$

Proof: note the verticies and edges in C are counted once in \sum and twice in $\sum \backslash C$
let's compute $X\left(\Sigma_{n, m}\right)$ for $m \geq 1$

note: $(m-1)$ arcs c_{1}, \ldots, c_{m-1} to
cut and get $\Sigma_{n, 1}$

so $X\left(\Sigma_{m, n}\right)=X\left(\Sigma_{n, 1}\right)-(m-1)$
now

so $X\left(\Sigma_{n, 1}\right)=X\left(\Sigma_{n-1,1}\right)-2$

$$
=\cdots=\chi\left(\Sigma_{0,1}\right)-2 n
$$

and $\Sigma_{0,1}=$ (111) \cong 伩 $X\left(\Sigma_{0,1}\right)=3-3+1=1$
so $X\left(\Sigma_{n, m}\right)=-m+1-2 n+1=2-2 n-m$ for $m \geq 1$
now

$$
\begin{aligned}
\therefore x\left(\Sigma_{n}\right) & =x\left(\tau_{n} \backslash c\right)-x(c) \\
& =x\left(\Sigma_{n, 1}\right)+x\left(D^{2}\right)-x(c) \\
& =1-2 n+1-0 \\
& =2-2 n
\end{aligned}
$$

so we have

$$
\begin{array}{ll}
X\left(\Sigma_{n, m}\right)=2-2 n-m & \text { for all } n, m \\
X\left(N_{n, m}\right)=2-n-m
\end{array} \quad " \quad "
$$

\longleftarrow check this
Remark: easy way to compute X

$$
X(\Sigma)= \begin{cases}1-\# \text { arcs to cut } \Sigma \text { to a disk } & \text { if } \partial \Sigma \neq \varnothing \\ 2-\# \text { arcs to cut }\left(\Sigma-D^{2}\right) \text { to a disk } & \text { if } \partial \Sigma=\varnothing\end{cases}
$$

exercise: $X\left(\Sigma \# \Sigma^{\prime}\right)=X(\Sigma)+X\left(\Sigma^{\prime}\right)-2$
for a topological space X, let $|X|$ denote the number of connected components
Th m 9:
two compact, connected surfaces Σ_{1} and Σ_{2} are homeomorphic \Leftrightarrow
$X\left(\Sigma_{1}\right)=X\left(\Sigma_{2}\right),\left|\partial \Sigma_{1}\right|=\left|\partial \Sigma_{2}\right|$ and Σ_{1} and Σ_{2} are both orientable or both are non-orientable
Moreover, any compact, connected surface is homeomorphic to $\sum_{n, m}$ or $N_{n, m}$
example: What surface is Σ
note: cut on 2 arcs to get a disk

so $X(\Sigma)=1-2=-1$

$$
|\partial \Sigma|=1
$$

the surface is orientable since as you go around any loop on E you don't have an odd number of half twists (similarly, you could note that the surface has "two sides" that is you could make it out of paper and color the sides with two colors)
so $\sum \cong \sum_{n, 1}$ for some n

$$
-1=X\left(\Sigma_{n, 1}\right)=2-2 n-1=1-2 n \Rightarrow n=1
$$

so $\Sigma \cong \Sigma_{1,1}$ 六 $1 / 1 / 1 / 1$
it is just embedded in \mathbb{R}^{3} strangely!
sketch of proof of $T^{\text {m }} 9$ (and hence $T^{m}{ }^{m} 7$): we first reduce to the closed case with exercise: let Σ and Σ^{\prime} be surfaces with $|\partial \Sigma|=\mid \partial \Sigma \Sigma^{\prime \prime}$
let $\hat{\Sigma}$ and $\hat{\Sigma}$ be Σ and Σ^{\prime} with disks glued to each boundary component

(e.g. $\hat{\Sigma}=\sum \cup_{\phi_{i}}\left(D_{1} \cup \ldots \cup D_{|J \Sigma|}\right)$
where $\phi_{1}: \partial D_{1} \rightarrow C_{1}$ is a homes and $\left.\partial \Sigma=C_{1} \cup \ldots \cup C_{\partial \Sigma I}\right)$
Then show Σ homeo to $\Sigma^{\prime} \Leftrightarrow \hat{\Sigma}$ homes to $\hat{\Sigma}^{\prime}$
Hint: \Leftrightarrow) uses lemmas 2 and 5
(\Leftrightarrow) is a generalization of lemma 4
thus from exercise we see $T^{\underline{m}} 9$ is true if it is true for compact, connected surfaces without boundary
note all the Σ_{n} and N_{n} are different (since they have different
Euler characteristics or one is orientable and other not) so all we have to do is show a compact, connected surface Σ without boundary is homeomorphic to Σ_{n} or N_{n} for some n
Claim 1: $X(\Sigma) \leq 2$ and $X(\Sigma)=2 \Leftrightarrow \Sigma \cong s^{2}$
Claim 2: if $\Sigma \neq S^{2}$, then there is an embeding $\phi: S^{\prime} \rightarrow \Sigma$ such that $\sum \backslash \phi\left(s^{\prime}\right)$ is connected moreover, a) Eorientable $\Rightarrow \phi\left(s^{\prime}\right)$ has a neighborhood homeo to $[-1,1] \times s^{\prime}$ with $\left\{03 \times S^{\prime}=\phi\left(s^{\prime}\right)\right.$
b) \sum non-orientable \Rightarrow we may assume $\phi\left(s^{\prime}\right)$ has a unbid homes to a Möbius band and $\Sigma-\phi\left(s^{\prime}\right)$ is either D^{2} or is non-or ièntable
we see the the follows from these claims "Induct" on $X(\Sigma)$
note Clam 1 says the true for $X(\Sigma)=2$
we inductively assume th ${ }^{m}$ for all surfaces with $X(\Sigma) \geq k+1$ and then prove for $X(\Sigma)=k$
(kind of a "reverse induction" could be "normal induction" by inducting on 2-X(Σ)
Assume \sum non-orientable
then by Claim 2, Ja Mäbius band M in $\Sigma\left(M\right.$ is ubhd of $\phi\left(s^{\prime}\right)$) let $\Sigma^{\prime}=\overline{\Sigma-M} U_{f} D^{2}$ where $f: \partial D^{2} \rightarrow \partial(\overline{\Sigma-M})$ is a home. note: Σ^{\prime} is well defined by lemmas 2 and 5
we say Σ^{\prime} is obtained from Σ by surgery on $\phi\left(s^{\prime}\right)$
note: 1) Σ 'is non-orcientoble or s^{2} q.e. remove something (M) and glue back something $\left(0^{2}\right)$ by Claim $2(b)$
2) recall $P=M=D^{2}$ projective plane
so $\Sigma=\Sigma^{\prime} \# P$
3)

$$
\begin{aligned}
x(\overline{\Sigma-\mu}) & =x(\overline{\Sigma-\mu})+x(\mu)^{\prime \prime} \\
& =x(\Sigma \backslash \partial \mu)=x(\Sigma)-x\left(s^{\prime \prime}\right)^{\prime}=x(\Sigma) \\
x\left(\Sigma^{\prime}\right) & =x\left(\Sigma^{\prime}, \partial D^{2}\right)-x\left(\partial 0^{2}\right)=0 \\
& =x(\overline{\Sigma-\mu})+x\left(D^{2}\right)=x(\Sigma)+1
\end{aligned}
$$

so by induction on X, Σ^{\prime} is N_{n} for some n

$$
\therefore \Sigma=\Sigma^{\prime} \# P=N_{n} \# P=N_{n+1}
$$

Assume \sum orientable
so by Claim $2, \exists$ a annulus $A \subset \sum\left(A\right.$ is a nbhd of $\phi\left(s^{\prime}\right)$) let $\Sigma^{\prime}=(\overline{\Sigma-A}) u_{f}\left(D^{2} \cup D^{2}\right)$ where $f:\left(\partial D^{2} \cup \partial D^{2}\right) \rightarrow \partial \overline{(\Sigma-A)}$ is a homeo.
Σ 'is said to be obtained from Σ by surgery on $\phi\left(s^{\prime}\right)$
note: 1) Σ ' is orientable (exercise)
2) $\Sigma=\Sigma^{\prime} \# T^{2}$ (exercise ${ }^{2} \infty \rightarrow \infty$ 楊)
3) $x\left(\Sigma^{\prime}\right)=x(\Sigma)+2$ (exercise)
so as above $\Sigma^{\prime} \cong \Sigma_{n}$ for some n

$$
\therefore \Sigma \cong \Sigma_{n} \# \tau^{2}=\Sigma_{n+1}
$$

Idea for Clam 1:
let I be a triangulation of Σ
choose a maximal tree T in 1 -skeleton
(i.e. contains allvertivies and if you add another edge then no longer a tree)
e.g.

let D be the dual graph, that is, D has

1) a vertex for in the center of each 2-simplex
2) two verticies are connected by an edge \Leftrightarrow the 2 -simplicies share an edge not in I
e.g.

exercise: D is connected
let $v_{1} e, f$ be the number of venticies, edges, and faces of I and $v_{T}, e_{T}, v_{D}, e_{D}$ same for T and D
note: $v=v_{T}$ by construction

$$
\begin{aligned}
& e=e_{T}+e_{D} \\
& f=v_{D}
\end{aligned}
$$

so

$$
\begin{aligned}
X(\Sigma) & =v-e+f=v_{T}-e_{T}-e_{D}+v_{D} \\
& =X(T)+X(D)
\end{aligned}
$$

from earlier exercise X (connected graph) ≤ 1
with equality \Leftrightarrow graph a tree

$$
\begin{aligned}
& \therefore X(\Sigma)=1+X(D) \leq 2 \\
& \text { with }=\Leftrightarrow D \text { a tree }
\end{aligned}
$$

exercise: if D is a tree then show Σ is obtained by gluing 2 disks along their boundary by a homeo. ie. $\Sigma \cong s^{2}$
hint: neighborhoods of trees are disks
this proves Claim 1
Claim Z:
If D is not a tree then there is a loop in D.
Thus an embedding of $S^{\prime} \hookrightarrow D C \Sigma$
let C be this loop
note: $C \cap(2-$ simplex $)=\left\{\begin{array}{l}\sigma \\ \text { interval I }\end{array}\right.$
so C has a neighborhood in each 2-smiplex it hits of the form $I \times[-1,1]$
so a neighborhood of C is obtained by gluing many copies of $I \times[-1,1]$ a long
 $(\partial I) \times[-1,1]$
exercise: This is homeomorphic to $[a, b] \times[-1,1]$ with $\{a\} \times\{-1,1]$ glued to $\{b\} \times[-1,1]$ by a homes
so neighborhood N is an annulus or Mäbius band if \sum orientable, must be an annulus. So done with Claim 2 (a)
now if Σ is non-orientable, then by definition there is an embedded Mäbius band
so we con take N to be this Mübius band
then if $\Sigma-N$ is non-orientable we are done
If $\Sigma-N$ is orientable, then we know Σ^{\prime} (= surgery on core of N)
is \sum_{n} for some n (ne. do classification of orientable surfaces first)
so $\Sigma=\Sigma_{n} \# P$
if $n=0$, then $\overline{\Sigma-N}=D^{2}$ so done
if $n>0$, then note

$N=$ Möbus band
check a neighborhood of a and b are Möbius bands and so we can use one of these to prove Claim_{2} 2(b)
Remarks:

1) Use understanding of homes $s^{\prime} \rightarrow s^{\prime}$ to build surfaces (connect sums, surgery, ...)
2) Use embeddings of $S^{\prime} \hookrightarrow$ surfaces to classify surfaces!
