I Groups

A. Bosic (group Theory
a group is a set 6 together with a binary operation (usually colled
multiplication)

$$: (\zeta \times G \rightarrow G : (q, 6)) \rightarrow q \cdot b$$

satisfying 1) \exists on element $e \in G$ st.
 $e \cdot g \cdot g \cdot e = g \quad \forall g \in G$
 e is called the identity element
2) for each $g \in G$ there is an element $g' \in G$ s.t.
 $g \cdot g' = g' \cdot g = e$
 g' is called the inverse of g and denoted g^{-1}
 \exists) for all g_{i}, g_{i}, g_{j} in G
 $(g_{i}, g_{i}) \cdot g_{i} = g \cdot (g_{i} \cdot g_{i})$ associativity
examples:
 $i) (R, t), (\Omega, t), (Z, t), (G, t)$ are groups
 D is the inverse of a
 $2) (N, t)$ is not a group (no intentity element)
 $\exists) (Nu(o), t)$ is not a group (no inverses)
 $q') (Q \cdot (o), x), (R - (o), x), (C - (o), x))$ are groups
 1 is the inverse of q .
 $5) kt Z_{p} = integers modulop$
 $(that is, call 2 integers equivalent n, m equivalent
modulo p f n-m is a multiple of p
 $Z_{p} = set of equivalence classes)$
 $50 Z_{p} = {0, 1, 2, ..., p-i}$$

our binary operation is +

$$(\mathbb{Z}_{p_{1}}+)$$
 is a group
eg. \mathbb{Z}_{4} is $\frac{+|0|(1|2|3)}{|0|(1|2|3)|}$
 $(1|2|3) = \frac{1}{2}$
 $(2|3|0|1)$
 $(1|2|3) = \frac{1}{2}$
 $(2|3|0|1)$
 $(2|3|0|1)$
 $(2|3|0|1)$
 $(2|3|0|1)$
 $(2|3|0|1)$
 $(2|3|0|1)$
 $(2|3|0|1)$
 $(2|3|0|1)$
 $(2|3|0|1)$
 $(2|3|0|1)$
 $(2|3|0|1)$
 $(2|3|0|1)$
 $(2|3|0|1)$
 $(2|3|0|1)$
 $(2|3|0|1)$
 $(2|3|0|1)$
 $(2|3|0|1)$
 $(2|3|0|1)$
 $(2|3|0|1)$
 $(2|3|0|1)$
 $(2|3|0|1)$
 $(2|3|0|1)$
 $(2|3|0|1)$
 $(2|3|0|1)$
 $(2|3|0|1)$
 $(2|3|0|1)$
 $(2|3|0|1)$
 $(2|3|0|1)$
 $(2|3|0|1)$
 $(2|3|0|1)$
 $(2|3|0|1)$
 $(2|3|0|1)$
 $(2|3|0|1)$
 $(2|3|0|1)$
 $(2|3|0|1)$
 $(2|3|0|1)$
 $(2|3|0|1)$
 $(2|3|0|1)$
 $(2|3|0|1)$
 $(2|3|0|1)$
 $(2|3|0|1)$
 $(2|3|0|1)$
 $(2|3|0|1)$
 $(2|3|0|1)$
 $(2|3|0|1)$
 $(2|3|0|1)$
 $(2|3|0|1)$
 $(2|3|0|1)$
 $(2|3|0|1)$
 $(2|3|0|1)$
 $(2|3|0|1)$
 $(2|3|0|1)$
 $(2|3|0|1)$
 $(2|3|0|1)$
 $(2|3|0|1)$
 $(2|3|0|1)$
 $(2|3|0|1)$
 $(2|3|0|1)$
 $(2|3|0|1)$
 $(2|3|0|1)$
 $(2|3|0|1)$
 $(2|3|0|1)$
 $(2|3|0|1)$
 $(2|3|0|1)$
 $(2|3|0|1)$
 $(2|3|0|1)$
 $(2|3|0|1)$
 $(2|3|0|1)$
 $(2|3|0|1)$
 $(2|3|0|1)$
 $(2|3|0|1)$
 $(2|3|0|1)$
 $(2|3|0|1)$
 $(2|3|0|1)$
 $(2|3|0|1)$
 $(2|3|0|1)$
 $(2|3|0|1)$
 $(2|3|0|1)$
 $(2|3|0|1)$
 $(2|3|0|1)$
 $(2|3|0|1)$
 $(2|3|0|1)$
 $(2|3|0|1)$
 $(2|3|0|1)$
 $(2|3|0|1)$
 $(2|3|0|1)$
 $(2|3|0|1)$
 $(2|3|0|1)$
 $(2|3|0|1)$
 $(2|3|0|1)$
 $(2|3|0|1)$
 $(2|3|0|1)$
 $(2|3|0|1)$
 $(2|3|0|1)$
 $(2|3|0|1)$
 $(2|3|0|1)$
 $(2|3|0|1)$
 $(2|3|0|1)$
 $(2|3|0|1)$
 $(2|3|0|1)$
 $(2|3|0|1)$
 $(2|3|0|1)$
 $(2|3|0|1)$
 $(2|3|0|1)$
 $(2|3|0|1)$
 $(2|3|0|1)$
 $(2|3|0|1)$
 $(2|3|0|1)$
 $(2|3|0|1)$
 $(2|3|0|1)$
 $(2|3|0|1)$
 $(2|3|0|1)$
 $(2|3|0|1)$
 $(2|3|0|1)$
 $(2|3|0|1)$
 $(2|3|0|1)$
 $(2|3|0|1)$
 $(2|3|0|1)$
 $(2|3|0|1)$
 $(2|3|0|1)$
 $(2|3|0|1)$
 $(2|3|0|1)$
 $(2|3|0|1)$
 $(2|3|0|1)$
 $(2|3|0|1)$
 $(2|3|0|1)$
 $(2|3|0|1)$
 $(2|3|0|1)$
 $(2|3|0|1)$
 $(2|3|0|1)$
 $(2|3|0|1)$
 $(2|3|0|1)$
 $(2|3|0|1)$
 $(2|3|0|1)$
 $(2|3|0|1)$
 $(2|3|0|1)$
 $(2|3|0|1)$
 $(2|3|0|1)$
 $(2|3|0|1)$
 $(2|3|0|1)$
 $(2|3|0|1)$
 $(2|3|0|1)$
 $(2|3|0|1)$
 $(2|3|0|1)$
 $(2|3|0|1)$

(inverses are unique)

Proof: given
$$a, b \in H$$

 $\exists ! a', b' \in G$ such that $f(a') = a, f(b') = b$
so $f(a' \cdot b') = f(a') \times f(b') = a \times b$
thus $f^{-1}(a \times b) = a' \cdot b' = f^{-1}(a) \cdot f^{-1}(b)$

<u>examples:</u>

is a group under composition
2)
$$|_{SO}(Z) \cong Z_{2}$$

2) f: $(Z, +) \rightarrow (Z_{p}, +): \chi \mapsto [\chi] \subseteq equivalence class mod p$
is a homomorphism since
 $f(a+b) = [z_{1}+b] = [a]+[b] = f(a)+f(b)$
3) the only homomorphis $(Z_{p}, +) \rightarrow (Z, +)$ is the trivial map
indeed if $f([1]) = n$, then $n = f([1]) = f([1]+...+f(1])$
 $p + i \text{ trines}$
 $= n + ... + n = [p+1) n$
 $go p n = 0 : n = 0$
4) by lemma II.2 if is easy to check
 $Mod(S') \cong Z_{2}$
5) note S₁ and Z_{2} are not isomorphic even though they both have
 b elements (S₁ not abakan, Z_{2} is)
lemma 3:
lemma 3:
lemma 3:
lemma 5:
lemma 5:
lemma 6: $f(g_{-}) = f(e_{G}) = f(e_{G}) \cdot f(e_{G})$
multiply both sides by $f(e_{G})^{-1}$ to get
 $e_{H} = f(e_{G}) \cdot [f(e_{G})]^{-1} = f(g_{-}) \cdot f(g) \cdot f(g_{-})]$
 $f(g^{-1}) = f(g^{-1}, g \cdot g^{-1}) = f(g^{-1}) \cdot f(g) \cdot f(g^{-1}) \cdot (f(g^{-1}))^{-1} = f(g^{-1}) \cdot f(g)$
multiply both sides by $(f(g_{-}))^{-1} = f(g^{-1}) \cdot f(g^{-$

$$f(g)^{-1} = f(g^{-1})$$

lemma 4:

a homomorphism $f: G \rightarrow H$ is injective $\rightleftharpoons f'(e_H) = \{e_G\}$

<u>Proof</u>: (=) if f is injective we have $f'(e_{H}) = \{e_{G}\}$ since we know $f(e_{G}) = e_{H}$ (=) suppose f(a) = f(b)then $f(a^{-1}b) = f(a)^{-1}f(b) = e_{H}$ so $a^{-1}b \in f''(e_{H}) = \{e_{G}\} \therefore a^{-1}b = e_{G}$ so a = b and f is one-to-one

let
$$(G, \cdot)$$
 be a group
a subgroup of G is a subset $H \subset G$ such that $a, b \in H \Rightarrow a \cdot b \in H$
and $a \in H \Rightarrow a^{-r} \in H$
we denote this by $H < G$

examples:

exercise: <9> is isomorphic to Zn

let
$$H < G$$
 be a subgroup
a right coset of H is
 $Hg = \{hg\} h \in H\} \subset G$
we say g is a representative of the coset
examples:
i) $H = \langle e^{\frac{\pi \pi i}{n}} \rangle < S'$
let $g = e^{\pi}$
then $Hg = \{e^{i(\frac{2\pi}{n} + \Theta)}\}$
 $\underbrace{not} a \ subgroup \ if \ g \neq 1$
2) let l be a line in (\mathbb{R}^{2}_{+})
 $l < \mathbb{R}^{2}_{,} \ t \in \mathbb{R}^{2}$
 $lt = line \ paralle| \ to \ l$
 $through \ t$

Proof: (⇒) if
$$Ht = Hs$$
, then $t \in Hs$
so $t = h$:s for some $h \in H$
 $\therefore t \cdot s^{-1} = h \in H$
(⇐) if $t \cdot s^{-1} = h \in H$ then $t = h \cdot s$
so if $x \in Ht$, then $x = h_x \cdot t$ some $h_x \in H$
 $\therefore x = h_x \cdot (h \cdot s) = (h_x \cdot h) \cdot s$
so $x \in Hs$
Can similarly show $Hs \in Ht$

 $\frac{lemma 6}{lf} = \frac{1}{16} H < G, then two right cosets are either equal or disjoint}$ $\frac{Proof:}{If x \in Ht \cap Hs, then h; t = x = h; s} for h_{1} \in H$ $\therefore t : s^{-1} = h_{1}^{-1} \cdot h_{2} \in H \text{ and so } Ht = Hs \text{ by lemma 5}$ $\frac{1}{67} lemma 6 \text{ says cosets of } H \text{ decompose } G \text{ into disjoint sets}$ lemma 6 says cosets of H decompose G into disjoint sets If H < G, then the <u>index of H in G</u> is the number of right cosets of H in G, and is denoted [G:H] $\frac{237^{+1}}{(37^{+1} G)^{+0}} = \frac{237^{+2}}{(37^{+1} G)^{+0}$

2)
$$\langle e^{i\frac{2\pi}{n}} \rangle < s'$$

for $0 \le \theta < \frac{2\pi}{n}$ get disjoint cosets $\langle e^{i\frac{2\pi}{n}} \rangle e^{i\theta}$
so $[s': \langle e^{i\frac{2\pi}{n}} \rangle]$ is infinite

so [₴:<n>]=n

the <u>order</u> of a group G is the number of elements in G it is denoted 1G1

<u>lemma 7(Lagrange):</u> G a finite group and H<G, then [GI = [G:H] |H|

 $\langle n \rangle + n = \langle n \rangle$

<u>Proof</u>: there are [G:H] disjoint cosets of Heach containing IHI elements <u>examples:</u>

$$|\langle [3] \rangle \langle \mathbb{Z}_{6}$$

$$|\langle [1] [2] [3] [4] [5] \\ \times \times \times \times \times \times \\ \langle [3] \rangle \\ \langle [3] \rangle + 1 \\ \langle [3] \rangle + 2$$

$$|\langle [3] \rangle + 2$$

$$|\langle [3] \rangle | = 3 \\ |\langle [3] \rangle | = 2$$

$$|\mathbb{Z}_{6}| = 6 = 3 \cdot 2 = [\mathbb{Z}_{6} : \langle [3] \rangle] \cdot |\langle [3] \rangle|$$

2) Fun
$$Th^{\underline{m}}$$
: if p is prime and $|G| = p$, then
G is cyclic (and hence abelian)
Indeed, if G has any element $g \neq e$, then
 $\langle g \rangle$ is a subgroup $\neq \{e\}$
 $|\langle g \rangle|$ divides $|G|$ so is p or 1
so must be p, $\therefore G = \langle g \rangle$

Th=8:

If HAG, then the set of right cosets of H form a group

The group is denoted G/H and has order [G:H]

Proof: multiplication is just "set wise " multiplication

ne
$$S, T \in G, \text{ then } S \cdot T = \{ a \cdot t \mid a \in S, t \in T \}$$

note: $(H_S)(H_t) = (H_S)((s^{-1}H_S)t) = (H_S s^{-1})(H_S t) = H(H_S t) = H_S t$
H normal check this

$$\begin{aligned} & \text{Intermal end of the set o$$

 $\frac{|emma \, 9:}{\phi: G_1 \rightarrow G_2} = \frac{1}{2} \frac{\phi: G_2 \rightarrow G_2}{ker \, \phi \, 4 \, G_1} + \frac{1}{2} \frac{\phi: G_2}{her \, \phi \, 4 \, G_1}$

Proof:

$$g_{1}, g_{2} \in \ker \phi, \#en$$

 $\psi(g, g_{1}) = \psi(g_{1}) \cdot \psi(g_{2}) = e_{z} \cdot e_{z} = e_{z}$
so $g_{1}g_{z} \in \ker \phi$
 $g \in \ker \phi, \#en$
 $\psi(g^{-1}) = (\psi(g))^{-1} = (e_{z})^{-1} = e_{z}$
so $g^{-1} \in \ker \phi$
 $\therefore \ker \phi < G_{1}$
now if $g \in G_{1}$, we need to see
 $g(\ker \phi)g^{-1} = \ker \phi$
If $\tilde{g} \in g(\ker \phi)g^{-1}$, then $\tilde{g} = g\bar{g}g^{-1}$ some $\bar{g} \in \ker \phi$
thus $\psi(\tilde{g}) = \psi(g\bar{g}g^{-1}) = \phi(g) \cdot \psi(\bar{g}) \cdot \psi(g^{-1}) = \psi(g) \cdot e_{z}(\psi(g))^{-1}$
 $= \psi(g) \cdot (\psi(g))^{-1} = e_{z}$
 $\therefore g \in \ker \phi$
similarly, if $\tilde{g} \in \ker \phi, you can check $\tilde{g} \in g(\ker \phi)g^{-1}$
 $so \ker \phi \leq G_{1}$$

<u>exercise</u>: if $\phi: G_1 \rightarrow G_2$ is a homeomorphism, then show $\begin{array}{c}G_1/_{ker}\phi \cong im \phi & (this is the 1st isomorphism)\\ \hline & & \\isomorphic & theorem)\end{array}$ eiven two provides A and B. the direct cum of A and B denoted

given two groups A and B, the direct sum of A and B, denoted $A \oplus B$, is the set $A \times B = \{(a,b): a \in A \text{ and } b \in B\}$ with multiplication defined component wise $(a,b) \cdot (c,d) = (a \cdot c, b \cdot d)$

2) $X = \{a, c, d, t, o\}$ so words are like: dog cat ccta'o'...

define multiplication on F(X) by concatenation followed by reduction <u>examples:</u> 1) X = {x} $\chi^2 \cdot \chi^5 = \chi^7$ $x^{-2} \cdot \chi^5 = x^{-1} x^{-1} x x x x x = x x x = x^3$ 2) X = {a,b} then (a²ba⁻'b)·(b⁻'a³) = a²ba² exercise: i) F(x) with multiplication above is a group z) note we have a map $i: X \rightarrow F(x)$ Show that given any function f: X -> G, where G is some group, there is a unique homomorphism f: F(X) -> 6 satisfying 3) if there is a bijection $j: X \rightarrow Y$ then F(X) and F(Y)are isomorphic $\psi |X| = 1$, then $F(X) \cong \mathbb{Z}$ (abelian) but if IXI>1, then F(X) is non-abelian Hint: map F(X) onto something non-abelian given a collection R of words in X u X, let (R) be the smallest normal subgroup of F(X) containing R then denote by {XIR} the group F(X)/LR> this is called a group presentation

if 6 some group and
$$G \ge \langle X | R \rangle$$
 then we say $\langle X | R \rangle$ is
a presentation of G
if X is thit, say $[g_{13} \dots g_{n}]$, and
R is thit, say $[f_{13} \dots f_{n}]$, then
we usually write $(g_{13} \dots g_{n}] r_{13} \dots r_{m}$?
If 6 has a presentation where X is thick we say 6 is thirtely presented
if X and R are thirte, then we say 6 is finitely presented
intuitively: $(g_{13} \dots g_{n}| r_{13} \dots r_{m})$ is the group of all words in g_{1} and g_{1}^{-1}
where if you ever see as r_{1} you can remove if (you can
also insert it any where)
examples:
i) $\langle g|g^{n} \rangle$ this is all words in g, g^{-1}, e .
should be
writing ever
intring ever
 $g^{-1} = g^{n}g^{-1} = g^{n-1}$
easy to see ever element is of the form g^{k} , $0 \le k \le n$
 $g^{nertice:} \langle g|g^{n} \rangle \rightarrow \mathbb{Z}_{n}$ is an isomorphism
 $g^{k} \longrightarrow \mathbb{Z}_{k}$
2) a presentation of \mathbb{Z} is $\langle g|B^{n} \rangle$
3) check a presentation of D_{n} is
 $\langle x, y|x^{n}, y^{2}, xyxy \rangle$
4) consider $\langle x, y|xyx^{n}y^{n} \rangle$
 $rows is called a commutation of
 $x endy$, it is usually denoted $[X, Y]$
note the relation says $xyx^{n}y^{-1} = e$
 $1e : xy = yx$ (x and y commute)$

so any word in the above group can be written

$$x^{n}y^{m}$$
 for some $a, m \in \mathbb{Z}$
enercise: Show $\mathbb{Z} \oplus \mathbb{Z} \cong \langle x, y | xyx^{-i}y^{-i} \rangle$
exercises:
1) Every group G has a presentation
Hint: let $X=G$
2) let $G = \langle g_{1,...,g_{n}} | n_{1,...,r_{m}} \rangle$, and H any group
choose elements $h_{1,...,h_{n}} \in H$
There is a unique well-define d howomorphism
 $\phi: G \to H$
sending g_{1} to h_{i} if "relations respected"
(i.e. if $r_{i} = g_{j_{i}}^{c_{i...}} \dots g_{j_{k_{i}}}^{c_{k_{i}}}$, then $h_{j_{i}}^{c_{i...}} \dots h_{j_{k}}^{c_{k}} = e_{H}$)
C. Braid groups and the Jones polynomia
a n-string braid is a disjoint union of arcs in $\mathbb{R}^{2} \times [0, 1]$ with
end points $\{(0, i, 0)\} \subset \mathbb{R}^{2} \times [0]$
such that the restriction of the projection $\mathbb{R}^{2} \times (0, 1] \to [0, 1]$
 $f \in \mathbb{R}^{n} \times \{0\}$

two braids β_0, β_1 are <u>equivalent</u> if $\exists 1$ -parameter family of braids β_t , $0 \le t \le 1$, going from $\beta_0 to \beta_1$ we write $\beta_0 = \beta_1$, if equivalent

notice that

$$\frac{Th^{m} ||^{2}}{B_{n} \text{ has presentation}} = \left\langle \sigma_{1}, \dots, \sigma_{i-1} \right| \sigma_{n} \sigma_{n+1} \sigma_{n} = \sigma_{i+1} \sigma_{n} \sigma_{i+1} | 1 \le i \le n-2, \sigma_{1} \sigma_{1} = \sigma_{1} \sigma_{1} \sigma_{1} = \sigma_{i+1} \sigma_{n} \sigma_{i+1} | 1 \le i \le n-2, \sigma_{1} \sigma_{1} = \sigma_{1} \sigma_{1} \sigma_{1} \sigma_{1} = \sigma_{i+1} \sigma_{n} \sigma_{i+1} \sigma_{n} \sigma_{i+1} | 1 \le i \le n-2, \sigma_{1} \sigma_{1} = \sigma_{1} \sigma_{1$$

Proof: given any braid &, can isotop so crossings occure at different levels

$$\sigma_3$$
 -1 so β is a product of $\sigma_1, \dots, \sigma_{n-1}$
 σ_3^{-1} σ_2

: oi,..., on generate Bn

from what we know about group presentations, since we have relations above, we have a homomorphism

P-> Bn

and we just saw its surjective injective is a braid version of Reidemeister's Th^m (won't do here)

given a braid β orient strands from $\mathbb{R}^2 \times \{0\}$ to $\mathbb{R}^2 \times \{1\}$ the <u>closure</u> of β , denoted $\hat{\beta}$, is obtained as shown

The 12 (Alexander 1923): every oriented link is the closure of a braid

Sketch of proof:

note we can translate β so it is winding about (0.0) and it K has a diagram such that € component (in polar coords) always decreasing, then you can isotop all crossings to left hand side and see K as a closed braid so how can you arrange € coord condition? 1st mark strands going "wrong way"

the equivalence relation on the set
$$\prod_{n=1}^{m} B_n$$
 generated by
i) conjugation in B_n and
i) stabilization
is called Markov equivalence and denoted $\stackrel{n}{\sim}$
Th⁼¹⁵ (Markov 1936)
 $\hat{B}_n = \hat{B}_n \iff \beta_n \stackrel{n}{\rightarrow} \beta_n$
from above we have proven (\ll), the other implication is another
Reidemeister type th⁼¹ (wont do have)
Remark: We have now twreed studying knots into studying group (and
an equivalence relation)!
so to get an invariant of links we can look for a Markov trace.
a Markov trace $\mu = \{\mu_n\}$ is a set of functions
 $\mu_n : B_n \rightarrow R$
(where R is some algebraic thing, like a group)
such that
 i $\mu_{n+1}(\beta \sigma_n^{-1}) = a^{2i}\mu_n(\beta)$ $\forall \beta \in B_n$
define the writhe of a braid by
 $\omega : B_n \rightarrow \mathbb{Z}$
by $\omega(\sigma_i) = 1$ and $\omega(\sigma_i^{-1}) = -1$ and extend to a word
by adding, $\eta \in \omega(\beta) = :exponent sum''
 $eg = \omega(\sigma_i \sigma_i \sigma_i^{-1}) = 1$
enercise: i) this is well-defined
 i D is a diagram for $\hat{\beta}$ then $\omega(\beta) = \omega(D)$ defined
 $erker$$

$$\frac{1}{16} \frac{1}{9} \frac{1}{16} \frac{$$

I a product defined by concatenation

there is an identity

the set PTn of planar n-tangles is a monoid (n.e. "group without inverses")

for $\tau \in PT_n$ we can form the closure $\hat{\tau} = \prod close curves in \mathbb{R}^2$

The <u>Temperley-Lieb algebra</u> TL_n is the set of formal sums $\sum_{i=1}^{k} p_i \tau_i$ where $p_i \in \mathbb{Z}[A_iA^{-1}]$, A a formal variable and $\tau_i \in PL_n$ but identify anything of the form $\tau \perp 0$ with $(-A^2 - A^{-L}) \tau$ $\zeta_{lose circle}$

note: we can add and multiply elements of
$$TL_n$$

To define elements h_i i 2+1

in PTn define elements hi i 2+1 15isn-1 "hooks" 1 2+1

 TL_n is formal sums $\sum P_k w_k$, where $P_k \in \mathbb{Z}[A, A^{-1}]$ and w_k are words in the h_i , subject to the relations 1, 2, 3 above

exercise: Try to prove this!
let
$$p: B_n \rightarrow TL_n$$
 be defined by $p(\sigma_i) = A + A^{-1}h_i$
 $p(\sigma_i) = A^{-1} + Ah_i$

and extend multiplicitively
to see
$$\rho$$
 is well-defined we need to see
 $\rho(\sigma_1) \rho(\sigma_1^{-1}) = 1$
 $\rho(\sigma_1) \rho(\sigma_2) = \rho(\sigma_2) \rho(\sigma_3) |1-j| > 1$
 $\rho(\sigma_1) \rho(\sigma_2) = \rho(\sigma_3) \rho(\sigma_3) |1-j| > 1$
 $\rho(\sigma_3) \rho(\sigma_3) \rho(\sigma_3) = \rho(\sigma_3) \rho(\sigma_3) \rho(\sigma_3) \rho(\sigma_3)$

for 1) we have
$$\rho(\sigma_1)\rho(\sigma_2^{-1}) = (A + A^{-1}h_1)(A^{-1} + Ah_1) = 1 + (A^2 + A^{-2})h_1 + h_2^2$$

= $1 + (A^2 + A^{-2})h_1 + (-A^2 - A^{-2})h_1 = 1$

$$for 2) we have \rho(\sigma_{1})\rho(\sigma_{1}) = (A + A^{-1}h_{1})(A + A^{-1}h_{1})$$

$$= A^{2} + h_{1} + h_{1} + A^{-2}h_{2}h_{3}$$

$$= A^{2} + h_{1} + h_{1} + A^{-2}h_{3}h_{1} = (A + A^{-1}h_{3})(A + A^{-1}h_{1})$$

$$= \rho(\sigma_{1})\rho(\sigma_{1})$$

for 3) we have

$$p(\sigma_{1})p(\sigma_{1}+|p(\sigma_{2})| = (A+A^{-1}k_{1})(A+A^{-1}k_{1})(A+A^{-1}k_{1})$$

$$= (A^{2}+k_{1}+A^{-2}k_{1}+k_{1}+A^{-1}k_{1$$

$$\frac{(hech: with a = -A^{3} we have $\mu_{Att}(\beta \sigma_{n}^{2}) = a^{2!}\mu_{n}(\beta)$

$$kt \beta \in B_{n}, so \beta = \frac{h}{j} \sigma_{1}^{k} (A^{k}; 1 + A^{-k}; h_{1}) when you williply
and $\rho(\beta) = \frac{h}{j^{2!}} (A^{k}; 1 + A^{-k}; h_{1}) when you williply
acch term carries
recall a state s of β is a choice of A or B -splitting for-
each σ_{1}^{k}

$$A^{-smoothing}) ($$

$$a^{k}; \beta \in S_{moothing}^{k}) ($$

$$a^{k};$$$$$$$

$$\therefore \mu_{n+1}(\beta \sigma_n) = tr_{n+1}(\rho(\beta \sigma_n)) = tr_n \left(\sum_{\substack{s \neq tris}\\s \neq tris}(A\beta_s T_{s_A} + A^{-1}\beta_s T_{s_B})\right)$$

$$= \sum_{s} \left(A\beta_s \left(-A^2 - A^{-s}\right)^{|\widehat{T_s}| + 1} + A^{-1}\beta_s \left(-A^2 - A^{-s}\right)^{|\widehat{T_s}|}\right)$$

$$= (A(-A^2 - A^{-s}) + A^{-1}) \mu_n(\sigma_n)$$

$$= -A^3 \mu_n(\sigma_n)$$
Similarly $\mu_{n+1}(\beta \sigma_n^{-1}) = -A^{-3} \mu_n(\sigma_n)$

$$(f_L) = F_L(A)$$
If $L = \hat{\beta}$ and D is the diagram for L coming from β
then one can check that \bigotimes shows
$$\mu(\beta) = \langle D \rangle = Kauffmon bracker$$
we also saw $\omega(\beta) = \omega(D)$
So $I_{\mu}(L) = -A^{-3}\omega(D)\langle D \rangle = F_L(A)$

$$(f_L) = -A^{-3}\omega(D)\langle D \rangle = F_L(A)$$