II Groups
A. Basic Group Theory
a group is a set G together with a binary operation (usually called multiplication)

$$
: G \times G \rightarrow G:(a, b) \mapsto a \cdot b
$$

satisfying 1) \exists an element $e \in G$ st.

$$
e \cdot g=g \cdot e=g \quad \forall g \in G
$$

e is called the identity element
2) for each $g \in G$ there is an element $g^{\prime} \in G$ s.t.

$$
g \cdot g^{\prime}=g^{\prime} \cdot g=e
$$

g^{\prime} is called the civerse of g and denoted g^{-1}
3) for all g_{1}, g_{2}, g_{3} in G

$$
\left(g_{1} \cdot g_{2}\right) \cdot g_{3}=g_{1} \cdot\left(g_{2} \cdot g_{3}\right)
$$

associativity
examples:

1) $(\mathbb{R},+),(\mathbb{Q},+),(\mathbb{Z},+),(\mathbb{Q},+)$ are groups

0 is the identity element
$-a$ is the inverse of a
2) $(\mathbb{N},+)$ is not a group (no identity element)
3) ($N \cup\{0\},+$) is not a group (no inverses)
4) $(\mathbb{Q}-\{0\}, x),(\mathbb{R}-\{0\}, x),(\mathbb{C}\{0\}, x)$ are groups

1 is the identity element
$1 / q$ is the inverse of q
5) let $\mathbb{Z}_{p}=$ integers modulo p
(that is, call 2 integers equivalent n, m equivalent modulo p if $n-m$ is a multiple of p $\mathbb{Z}_{p}=$ set of equivalence classes)
so $\mathbb{Z}_{p}=\{0,1,2, \ldots, p-1\}$
our binary operation is + $\left(\mathbb{Z}_{p},+\right)$ is a group
egg. \mathbb{Z}_{4} is
symmetric group
\downarrow on n elements

+	0	1	2	3
0	0	1	2	3
1	1	2	3	0
2	2	3	0	1
3	3	0	1	2

6) let $S_{n}=$ set of permutations of $\{1,2, \ldots, n\}$
ie. $\sigma \in S_{n}$ is a bijection $\sigma:\{1,2, \ldots n\} \rightarrow\{1,2, \ldots, n\}$
the binary operation is comosition
exercise: 1) $\left(S_{n}, 0\right)$ is a group with identity = identity map
7) S_{n} has n ! elements
eg: in S_{3} let $[i, j, k]$ be the map

$$
\begin{aligned}
& 1 \mapsto i \\
& 2 \mapsto j \\
& 3 \mapsto k
\end{aligned}
$$

egg. $[2,1,3]$ is the map

$$
\begin{array}{lll}
1 & \mapsto \\
2 & \stackrel{1}{\mapsto} & 1 \\
3 & \\
\hline
\end{array}
$$

s_{3} has 6 elements

$$
[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]
$$

note: $[2,1,3] \cdot[1,3,2]=[2,3,1]$

$$
[1,3,2] \circ[2,1,3]=[3,1,2]
$$

so multiplication is not commutative
a group is called abelian if $a \cdot b=b \cdot a$ for all $a, b \in G$ examples 11,4$), 5$) are abelian, 6) is not for $n \geq 3$
7) let Δ_{n} be a regular n-gon $n=3$ let $D_{n}=$ symmetries of Δ_{n}
with multiplication

$$
n=4
$$

being composition

D_{n} is called the dihedral group
e.g. $n=3$

let $x=$ rotation by θ_{0}
$y=$ reflection about y-axis
let $e=$ identity
note: $x \cdot x=$ rotation by $2 \theta_{0}$
$x \cdot x \cdot x=$ rotation by $3 \theta_{0}=e$
$y \cdot y=e$
similarly for n-gon there is rotation by $\frac{2 \pi}{n}$ denoted x and $x^{n}=e$
and reflection in y-axis (so $y^{2}=e$)
exercise: 1) $x \cdot y \cdot x \cdot y=e$ in D_{n} (any n)
2) every element in D_{n} can be written as

$$
x^{i} y^{j}
$$

some i, j
3) D_{n} has $2 n$ elements
8) let X be any topological space
let Homeo $(X)=\{$ all homeomorphisms of $X\}$
exercise: this is a group

$$
\text { let } \operatorname{Mod}(x)=\operatorname{Homeo}(X) / \sim
$$

called the where r is isotopy
mapping class group
exercise: this is a group
lemma 1:
let (G, \cdot) be a group

1) if $e_{1}, e_{2} \in G$ such that $e_{1} \cdot g=g \cdot e_{1}=g=e_{2} \cdot g=g \cdot e_{2} \forall g \in G$
then $e_{1}=e_{2}$ (identity in G unique)
2) If $g_{1}, g_{2} \in G$ such that $g \cdot g_{1}=g_{1} \cdot g=e=g_{2} \cdot g=g \cdot g_{2}$, then $g_{1}=g_{2}$
(inverses are unique)

Proof:
2) $g_{2}=g_{2} \cdot e=g_{2} \cdot\left(g \cdot g_{1}\right)=\left(g_{2} \cdot g\right) \cdot g_{1}=e \cdot g_{1}=g_{1}$

1) $e_{1}=e_{1} \cdot e_{2}=e_{2}$

If (G, \cdot) and (H, x) are groups
a homomorphism is a map $f: G \rightarrow H$ such that $f(a . b)=f(a) \times f(b)$
an isomorphism is a bijective homomorphism

- fundamental equivalence relation for groups try to understand groups upto isomorphism
Remark:
homomorphisms of groups are like continuous maps of topological spaces (ie. "preserve" structure) isomorphisms of groups are like homeomorphisms of topological spaces
lemma 2:
If $f: G \rightarrow H$ is an isomorphism, then $f^{-1}: H \rightarrow G$ is a homomorphism (and hence an isomorphism)

Proof: given $a, b \in H$
$\exists!a^{\prime}, b^{\prime} \in G$ such that $f\left(a^{\prime}\right)=a, f\left(b^{\prime}\right)=b$
so $f\left(a^{\prime} \cdot b^{\prime}\right)=f\left(a^{\prime}\right) \times f\left(b^{\prime}\right)=a \times b$
thus $f^{-1}(a \times b)=a^{\prime} \cdot b^{\prime}=f^{-1}(a) \cdot f^{-1}(b)$
examples:

1) $f:(\mathbb{Z},+) \longrightarrow(\mathbb{z}, \cdot): x \mapsto n \cdot x \quad$ (n a fixed integer)
is a homomorphism since

$$
f(a+b)=n \cdot(a+b)=n \cdot a+n \cdot b=f(a)+f(b)
$$

if $n \neq \pm 1$, then f not a bijection, so not an isomorphism if $n= \pm 1$, then f is an isomorphism
exercise: 1) if G a group, then show $I_{s o}(G)=\{$ isomorphisms of G\}
is a group under composition
2) $l_{50}\left(z_{)}\right) \cong \mathbb{Z}_{2}$
2) $f:(\mathbb{Z},+) \rightarrow\left(\mathbb{Z}_{p},+\right): x \mapsto[x]$ equivalence class $\bmod p$
is a homomorphism since

$$
f(a+b)=[a+b]=[a]+[b]=f(a)+f(b)
$$

3) the only homomorphis $\left(\mathbb{Z}_{p},+\right) \rightarrow(\mathbb{Z},+)$ is the trivial map indeed if $f(\{1])=n$, then $n=f(\{1])=f([1]+\ldots+[1])$

$$
\text { hen } \begin{aligned}
n & =f([1])=f(\underbrace{[1]+\ldots+[1]}_{p+1+\text { times }}) \\
& =n+\ldots+n=(p+1) n \\
\text { so } \rho n & =0 \quad \therefore n=0
\end{aligned}
$$

4) by lemma III. 2 it is easy to check

$$
\operatorname{Mod}\left(s^{\prime}\right) \cong \mathbb{Z}_{2}
$$

5) note S_{3} and \mathbb{Z}_{6} are not isomorphic even though they both have 6 elements (S_{3} not abelian, \mathbb{Z}_{6} is)
lemma 3:
If $f: G \rightarrow H$ a homomorphism, then
6) $f\left(e_{G}\right)=e_{H} \quad$ (takes identity to identity)
7) $f\left(g^{-1}\right)=(f(g))^{-1}$ (takes inverses to inverses)

Proof:

1) $f\left(e_{G}\right)=f\left(e_{G} \cdot e_{G}\right)=f\left(e_{G}\right) \cdot f\left(e_{G}\right)$
multiply both sides by $f\left(e_{G}\right)^{-1}$ to get

$$
e_{H}=f\left(e_{G}\right) \cdot\left(f\left(e_{G}\right)\right)^{-1}=f\left(e_{G}\right) \cdot f\left(e_{G}\right) \cdot\left(f\left(e_{G}\right)\right)^{-1}=f\left(e_{G}\right)
$$

2) $f\left(g^{-1}\right)=f\left(g^{-1} \cdot g \cdot g^{-1}\right)=f\left(g^{-1}\right) \cdot f(g) \cdot f\left(g^{-1}\right)$
multiply both sides by $\left(f\left(g^{-1}\right)\right)^{-1}$ to get

$$
e_{H}=f\left(g^{-1}\right)\left(f\left(g^{-1}\right)\right)^{-1}=f\left(g^{-1}\right) \cdot f(g) \cdot f\left(g^{-1}\right) \cdot\left(f\left(g^{-1}\right)\right)^{-1}=f\left(g^{-1}\right) \cdot f(g)
$$

multiply both sides by $(f(g))^{-1}$ to get

$$
f(g)^{-1}=f\left(g^{-1}\right)
$$

lemma 4:
a homomorphism $f: G \rightarrow H$ is
infective $\Leftrightarrow f^{-1}\left(e_{H}\right)=\left\{e_{G}\right\}$
Proof: (\Rightarrow) if f is injectice we have $f^{-1}\left(e_{H}\right)=\left\{e_{G}\right\}$
since we know $f\left(e_{G}\right)=e_{H}$
\Leftrightarrow suppose $f(a)=f(b)$
then $f\left(a^{-1} b\right)=f(a)^{-1} f(b)=e_{H}$
so $a^{-1} b \in f^{-1}\left(e_{H}\right)=\left\{e_{G}\right\} \quad \therefore a^{-1} b=e_{G}$
so $a=b$ and f is one-to-one
let (G, \cdot) be a group
a subgroup of G is a subset $H \subset G$ such that $a, b \in H \Rightarrow a \cdot b \in H$ and $a \in H \Rightarrow a^{-1} \in H$
we denote this by $H<G$
exeruse: H is a group (with operation coming from G)
examples:

1) if G is a group and $a \in G$, then let $\langle a\rangle=$ all powers of a exercise: $\langle a\rangle$ is a subgroup of G
$\langle a\rangle$ is called the cyclic subgroup of G generated by a if $\exists a \in G$ s.t. $G=\langle a\rangle$ then G is called a cyclic group
2) $n \in \mathbb{Z}$, then $\langle n\rangle=$ all integers divisible by n
this is a subgroup of \mathbb{Z}
exercise: $\langle n\rangle$ is isomorphic to $\# \Leftrightarrow n \neq 0$
3) $S^{\prime} \subset \mathbb{C}$ the unit complex numbers
$\left(s^{\prime}, \cdot\right)$ is a group (where is multiplication) let $g=e^{i \frac{i \pi}{n}}$ some $n>0$ an integer $\langle g\rangle\left\langle S^{\prime}\right.$

exercise: $\langle 9\rangle$ is isomorphic to \mathbb{Z}_{n}
let $H<G$ be a subgroup
a right coset of H is

$$
H_{g}=\{h g \mid h \in H\} C G
$$

we say g is a representative of the coset examples:

1) $H=\left\langle e^{\frac{2 \pi i}{n}}\right\rangle\left\langle s^{\prime}\right.$
let $g=e^{1 \theta}$
then $H g=\left\{e^{i\left(\frac{2 \pi}{n}+\theta\right)}\right\}$
not a subgroup if $g \neq 1$
2) let l be a line in $\left(\mathbb{R}^{2}+\right)$

$$
\begin{aligned}
& l<\mathbb{R}^{2}, t \in \mathbb{R}^{2} \\
& l_{t}=\text { line parallel / to } l \\
& \text { through } t
\end{aligned}
$$

lemma 5:
If $H<G$, then

$$
H_{t}=H s \leftrightarrow t \cdot s^{-1} \in H
$$

Proof: (\Rightarrow) if $H t=H s$, then $t \in H_{s}$
so $t=h \cdot s$ for some $h \in H$

$$
\therefore t \cdot s^{-1}=h \in H
$$

\Leftrightarrow) if $t \cdot s^{-1}=h \in H$ then $t=h \cdot s$
so if $x \in H+$, then $x=h_{x} \cdot+$ some $h_{x} \in H$

$$
\begin{aligned}
& \therefore \quad x=h_{x} \cdot(h \cdot s)=(\underbrace{\left(h_{x} \cdot h\right) \cdot s}_{\in H} \\
& \text { so } x \in H_{s}
\end{aligned}
$$

can similarly show $\mathrm{H}_{s} \mathrm{CH}+$
lemma 6: \qquad
If $H<G$, then two right cosets are either equal or disjoint
Proof: if $x \in H+n H s$, then $h_{1} t=x=h_{2} \cdot s$ for $h_{1} \in H$
$\therefore t \cdot s^{-1}=h_{1}^{-1} \cdot h_{2} \in H$ and so $H_{t}=H_{s}$ by lemma 5
lemma 6 says cosets of H decompose G into disjoint sets
If $H<G$, then the index of H in G is the number of right cosets of H in G, and is denoted $[G: H]$
examples:

1) $n \in \mathbb{Z},\langle n\rangle\langle\mathbb{Z}$
$\langle n\rangle+0$
$\langle n\rangle+1$
$\langle n\rangle+(n-1)$
$\langle n\rangle+n=\langle n\rangle$
so $[z:\langle n\rangle]=n$
2) $\left\langle e^{i \frac{2 \pi}{n}}\right\rangle\left\langle s^{\prime}\right.$
for $0 \leq \theta<\frac{2 \pi}{n}$ get disjoint coset $\left\langle e^{2 \frac{2 \pi}{n}}\right\rangle e^{2 \theta}$
so $\left[S^{\prime}:\left\langle e^{1 \frac{2 \pi}{n}}\right\rangle\right]$ is infinite
the order of a group G is the number of elements in G it is de noted $|G|$
lemma 7 (Lagrange):
G a finite group and $H<G$, then

$$
|G|=[G: H]|H|
$$

Proof: there are $[G: H]$ disjoint cosets of H each containing $|H|$ elements
examples:

1) $\langle[3]\rangle\left\langle\mathbb{Z}_{6}\right.$
$\left[\begin{array}{llllll}{[0]} & {[1]} & {[2]} & {[3]} & {[4]} & 5\end{array}\right]$
$\langle[3]\rangle$
$\langle[3]\rangle+1$
$\langle[3]\rangle+2$
so $\left[\mathbb{Z}_{6}:\langle[3]\rangle\right]=3$
$|\langle[3]\rangle|=2$
$\left|z_{6}\right|=6=3 \cdot 2=\left[\mathbb{z}_{6}:\langle[3]\rangle\right] \cdot|\langle[3]\rangle|$
2) Fun Th ${ }^{m}$: if p is prime and $\mid G 1=p$, then G is cyclic (and hence abelian)

Indeed, if G has any element $g \neq e$, then
$\langle g\rangle$ is a subgroup $\neq\{e\}$
$|\langle g\rangle|$ divides $|G|$ so is p or 1
so must be $p, \therefore G=\langle g\rangle$

If $H<G$, then a conjugate of H in G is

$$
g H g^{-1}=\left\{g h g^{-1} \mid h \in H\right\}
$$

H is called a normal subgroup of G if

$$
g H^{-1}=H \text { for all } g \in G
$$

this is denoted $H \triangleleft G$

If $H \triangleleft G$, then the set of right cosets of H form a group
The group is denoted G / H and has order [G:H]
Proof: multiplication is just "setwise" multiplication
2.e $S, T \subset G$, then $S \cdot T=\{a \cdot t \mid z \in S, t \in T\}$
note: $\left(H_{s}\right)(H t)=(H s)\left(\left(s^{-1} H s\right) t\right)=\left(H_{s s^{-1}}\right)\left(H_{s t}\right)=H(H s t)=H s t$
so setwise multiplication of cosets is a coset!
easy to see $H=H e$ is the identity element,
$H\left(g^{-1}\right)$ is inverse of Hg , and multiplication is associative
example:

$$
\langle n\rangle\langle\mathbb{Z}
$$

note: $(-m)+\langle n\rangle+(m)=\{-m+n k+m \mid k \in \mathbb{Z}\}$

$$
=\{n k \mid k \in \mathbb{Z}\}=\langle n\rangle
$$

so $\langle n\rangle \Delta \mathbb{Z}$
from above $[\mathbb{Z}:\langle n\rangle]=n$ so $\mathbb{Z} /\langle n\rangle$ has order n
define $\phi: \mathbb{Z} /\langle n\rangle \rightarrow \mathbb{E}_{n}$

$$
\langle n\rangle+m \longmapsto[m]
$$

easy to check ϕ is a bijective homomorphism
so $\mathbb{Z}_{n} \cong \mathbb{Z} /\langle n\rangle$
if $\phi: G \rightarrow G_{2}$ is a homeomorphism, then the kernel of ϕ is

$$
\operatorname{ker} \phi=\phi^{-1}\left(e_{2}\right)=\left\{g \in G_{1}: \phi(g)=e_{2}\right\}
$$

and the image of ϕ is

$$
\operatorname{im} \phi=\left\{\phi(g): g \in G_{1}\right\}
$$

lemma 9:
$\phi: G_{1} \rightarrow G_{2}$ a homomorphism, then

$$
\operatorname{ker} \phi \triangleleft G_{1} \text { and } \operatorname{in} \phi<G_{2}
$$

Proof:
$g_{1}, g_{2} \in \operatorname{ker} \phi$, then

$$
\phi\left(g_{1} \cdot g_{2}\right)=\phi\left(g_{1}\right) \cdot \phi\left(g_{2}\right)=e_{2} \cdot e_{2}=e_{2}
$$

so $g_{1} \cdot g_{2} \in \operatorname{ker} \phi$
$g \in \operatorname{ker} \phi$, then

$$
\phi\left(g^{-1}\right)=(\phi(g))^{-1}=\left(e_{2}\right)^{-1}=e_{2}
$$

so $g^{-1} \in \operatorname{ker} \phi$

$$
\therefore \operatorname{ker} \phi<G_{1}
$$

now if $g \in G_{1}$, we need to see

$$
g(\operatorname{ker} \phi) g^{-1}=\operatorname{ker} \phi
$$

If $\tilde{g} \in g(\operatorname{ker} \phi) g^{-1}$, then $\tilde{g}=9 \overline{9} 9^{-1}$ some $\bar{g} \in \operatorname{ker} \phi$
thus

$$
\begin{aligned}
\phi(\tilde{g}) & =\phi\left(g \bar{g} g^{-1}\right)=\phi(g) \cdot \phi(\bar{g}) \cdot \phi\left(g^{-1}\right)=\phi(g) \cdot e_{2} \cdot(\phi(g))^{-1} \\
& =\phi(g) \cdot(\phi(g))^{-1}=e_{2} \\
\therefore \tilde{g} & \in \operatorname{ker} \phi
\end{aligned}
$$

similarly, if $\tilde{g} \in$ her ϕ. you can check $\tilde{g} \epsilon g(\operatorname{ker} \phi) g^{-1}$ so $\operatorname{ker} \phi \Delta G_{1}$
exercise: show $\operatorname{im} \phi<G_{2}$
exercise: if $\phi: G_{1} \rightarrow G_{2}$ is a homeomorphism, then show
$G_{1} / \operatorname{ker} \phi \cong \operatorname{im} \phi \quad$ (this is the $1^{\text {st }}$ isomorphism
$\varlimsup_{\text {isomorphic }}$ theorem)
given two groups A and B, the direct sum of A and B, denoted $A \oplus B$, is the set

$$
A \times B=\{(a, b): a \in A \text { and } b \in B\}
$$

with multiplication defined component wise

$$
(a, b) \cdot(c, d)=(a \cdot c, b \cdot d)
$$

example: $\mathbb{Z} \oplus \mathbb{Z}$ ordered pairs of integers (n, m)

$$
(n, m) \cdot(k, l)=(n+k, m+l)
$$

Big Theorem:
any finitely generated abelian group is isomorphic to

$$
\underbrace{\mathbb{Z} \oplus \ldots \oplus \mathbb{Z}}_{n} \oplus \mathbb{Z}_{p_{1} n_{1}} \oplus \ldots \oplus \mathbb{Z}_{p_{2} n_{2}}
$$

where p_{1} are prime (not nec. distinct)
n_{1}, n are integers
B Group Presentations
We now give a nice way to represent a group
let X be any set
the free group generated by X is the set $F(X)$ of all "reduced words" in the letters $X \cup X^{-1}$
(where X^{-1} is just a copy of X, we denote an element of X^{-1} corresponding to $x \in X$, by x^{-1})
here by reduced word we mean if you see $x x^{-1}$ or $x^{-1} x$, remove it from the word
examples:

1) $X=\{x\}$ then the words are

x			and x^{-1}	
$x x$	denote x^{2}	$x^{-1} x^{-1}$	denote	x^{-2}
$x \times x$	x^{3}	$x^{-1} x^{-1} x^{-1}$		\vdots
\vdots	\vdots	\vdots		

also have the empty word which we denote $e=x^{0}$
note: we also have $x \times x^{-1}$ but not reduced but we can "reduce" it to x
2) $X=\{a, c, d, t, 0\}$
so words are like: $\begin{gathered}\text { dot } \\ \cot a^{-1}\end{gathered} 0^{-1} \ldots$
define multiplication on $F(X)$ by concatenation followed by reduction
examples:

1) $X=\{x\}$

$$
\begin{aligned}
& x^{2} \cdot x^{5}=x^{7} \\
& x^{-2} \cdot x^{5}=x^{-1} x^{-1} \times x \times x x=x x x=x^{3}
\end{aligned}
$$

2) $X=\{a, b\}$ then

$$
\left(a^{2} b a^{-1} b\right) \cdot\left(b^{-1} a^{3}\right)=a^{2} b a^{2}
$$

exercise:

1) $F(x)$ with multiplication above is a group
2) note we have a map $i: X \rightarrow F(x)$

$$
x \mapsto x
$$

Show that given any function $f: X \rightarrow G$,
where G is some group, there is a unique homomorphism $\tilde{f}: F(X) \rightarrow G$ satisfying

3) if there is a bijection $j: X \rightarrow Y$ then $F(X)$ and $F(Y)$ are isomorphic
4) $|x|=1$, then $F(x) \cong \mathbb{Z}$ (abelian)
but if $|X|>1$, then $F(X)$ is non-abelian
Hint: map $F(x)$ onto something non-abelian
given a collection R of words in $X \cup X^{-1}$, let $\langle R\rangle$ be the smallest normal subgroup of $F(X)$ containing R then denote by $\langle x \mid R\rangle$ the group

$$
F(X) /\langle R\rangle
$$

this is called a group presentation
if G some group and $G \cong\langle x \mid R\rangle$ then we say $\langle x \mid R\rangle$ is a presentation of G
if X is finite, say $\left\{g_{1}, \ldots g_{n}\right\}$, and
R is finite, say $\left\{c_{1}, \ldots r_{m}\right\}$, then
we usually write $\left\langle g_{1}, \ldots, g_{n} \mid r_{1}, \ldots r_{m}\right\rangle$
If G has a presentation where X is finite we say G is füntely generated if X and R are finite, then we say G is finitely presented
Intuitively: $\left\langle g_{1}, \ldots, g_{n} \mid r_{1}, \ldots, r_{m}\right\rangle$ is the group of all words in g_{2} and $g_{1}{ }^{-1}$ where if you ever see an r_{i} you can remove if (you can also insert if any where)
examples:

1) $\left\langle g \mid g^{n}\right\rangle$ this is all words in g, g^{-1}, ie.
should be waiting cosets of $\langle g n\rangle$, but we just interpret. words as their coset.

$$
\cdots, g^{-2}, g^{-1}, e, g, g^{2}, g^{3}, \cdots, g^{n-1}, g^{n}, \ldots
$$

but $g^{n}=e$ so $g^{n+1}=g^{n} \cdot g=g$

$$
g^{-1}=g^{n} g^{-1}=g^{n-1}
$$

easy to see every element is of the form $g^{k}, 0 \leq k<n$
exercise: $\left\langle g \mid g^{n}\right\rangle \longrightarrow \mathbb{Z}_{n}$ is an isomorphism $g^{k} \longmapsto[k]$
2) a presentation of \mathbb{Z} is $\langle g \mid \theta\rangle$
3) check a presentation of D_{n} is

$$
\left\langle x, y \mid x^{n}, y^{2}, x y x y\right\rangle
$$

4) consider $\left\langle x, y \mid x y x^{-1} y^{-1}\right\rangle$
this is called a commutator of x and y, If is usually denoted $[x, y]$
note, the relation says $\quad x y x^{-1} y^{-1}=e$
2.e. $x y=y x$ (x and y commute)

So any word in the above group can be written $x^{n} y^{m}$ for some $u, m \in \mathbb{Z}$
exercsé: Show $\mathbb{Z} \oplus \mathbb{Z} \cong\left\langle x, y \mid x y x^{-1} y^{-1}\right\rangle$
exercises:

1) Every group G has a presentation

Hint: let $X=G$
2) let $G=\left\langle g_{1}, \ldots, g_{n} \mid r_{1}, \ldots, r_{m}\right\rangle$, and H any group choose elements $h_{1}, \ldots, h_{n} \in H$
There is a unique well-defined homomorphism

$$
\phi: G \rightarrow H
$$

sending g_{1} to h_{i} if "relations respected"

$$
\text { (2.e. if } r_{2}=g_{j_{1}}^{\varepsilon_{1}} \cdots g_{j_{k}}^{\varepsilon_{k}} \text {, then } h_{J_{1}}^{\varepsilon_{1}} \cdots h_{j_{k}}^{\varepsilon_{k}}=e_{H} \text {) }
$$

C. Braid groups and the Jones polynomia
a n-string braid is a disjoint union of arcs in $\mathbb{R}^{2} \times[0,1]$ with end points

$$
\begin{array}{ll}
\{(0, i, 0)\} & \subset \mathbb{R}^{2} \times\{0\} \\
\{(0, i, 1)\} \subset \mathbb{R}^{2} \times\{0\}
\end{array}
$$

such that the restriction of the projection $\mathbb{R}^{2} \times[0,1] \rightarrow[0,1]$ to each arc is monotonic

two braids β_{0}, β_{1} are equivalent if $\exists 1$-parameter family of braids $\beta_{t}, 0 \leq t \leq 1$, going from β_{0} to β_{1} we write $\beta_{0}=\beta_{1}$ if equivalent

Remark: It is a (non-obvious) fact that $\beta_{0}=\beta_{1} \Leftrightarrow \beta_{0}$ and β_{1} are isotopic in $R^{2} \times[0,1]$, keeping end points fixed the product of 2 n-strand braids is just concatenation

lemma 10:

The set B_{n} of n-strand braids is a group with this product
Proof: Identity: is

associativity: clear
inverses: $\beta^{-1}=\operatorname{reflection}$ of β in $\mathbb{R}^{2} \times\{1\}$

let σ_{i} in $B_{n}, 1 \leq i \leq n-1$, be the braid

notice that

1) $\sigma_{1} \sigma_{1+1} \sigma_{1}=\sigma_{1+1} \sigma_{i} \sigma_{2+1} \underbrace{1 / 1}_{i+1} \leftrightarrow \underbrace{1 / 2}_{i+1} \quad$ Reidemeister 3"
2) $\sigma_{1} \sigma_{j}=\sigma_{1} \sigma_{1}$ if $|2-j|>1$

note: Reidemeister 2 corresponds to group relation

$$
\sigma_{1} \sigma_{1}^{-1}=e \quad \zeta^{\prime} \leftrightarrow \mid 1
$$

Th느I/:
B_{n} has presentation

$$
P=\left\langle\sigma_{1}, \ldots \sigma_{1-1}\right| \sigma_{1} \sigma_{1+1} \sigma_{1}=\sigma_{2+1} \sigma_{2} \sigma_{2+1}\left|\leq i \leq n-2, \sigma_{1} \sigma_{1}=\sigma_{,} \sigma_{1},|2-j|>1\right\rangle
$$

Proof: given any braid β can isotop so crossings occure at different levels

so β is a product of $\sigma_{1}, \ldots, \sigma_{n-1}$
$\therefore \sigma_{1}, \ldots, \sigma_{n}$ generate B_{n}
from what we know about group presentations, since we have relations above, we have a homomorphism

$$
P \rightarrow B_{n}
$$

and we just saw its surjectue
infective is a braid version of Reidemeister's Th ${ }^{m}$ (won't do here)
given a braid β orient strands from $\mathbb{R}^{2} \times\{0\}$ to $\mathbb{R}^{2} \times\{1\}$ the closure of β, denoted $\hat{\beta}$, is obtained as shown

examples:

1) $\mathbb{1}_{n} \in B_{n}$

2) in B_{2}

3) in B_{3}

$$
\overbrace{\left(\sigma_{1} \sigma_{2}^{-1} \sigma_{1} \sigma_{2}^{-1}\right)}=\text { figure } 8 \text { knot }
$$

Th m 12 (Alexander 1923):
every oriented link is the closure of a braid
sketch of proof:
note we can translate $\hat{\beta}$ so it is winding about (0.0) and if K has a diagram such that θ component (in polar coords) always decreasing, then you
 can usotop all crossings to left hand side and see K as a closed braid so how can you arrange θ coord condition? $1^{\text {st }}$ mark strands going "wrong way"

2add break strands up so they only go over or under other strands

$3^{\text {nd }}$ fix strands one by one

contrive fill done
So when is $\hat{\beta}_{1}=\hat{\beta}_{2}$?

1) Conjugation: if $\beta_{1}, \beta_{2} \in B_{n}$ and $\exists \gamma \in B_{n}$ s.t. $\beta_{2}=\gamma \beta_{1} \gamma^{-1}$

2) Stabilization: we have a map $s^{ \pm}: B_{n} \rightarrow B_{n+1}$
the equivalence relation on the set $\prod_{n=1}^{\infty} B_{n}$ generated by
3) conjugation in B_{n} and
4) stabilization
is called Markov equivalence and denoted $\underset{\sim}{\sim}$
Th ${ }^{m} / 3$ (Markov 1936)

$$
\hat{\beta_{1}}=\hat{\beta}_{2} \Leftrightarrow \beta_{1} \sim \beta_{2}
$$

from above we have proven (\Leftarrow), the other implication is another Reidemeister type th ${ }^{m}$ (wont do here)
Remark: We have now turned studying knots into studying group (and an equivalence relation)!
so to get an invariant of links we can look for a Markov trace.
a Markov trace $\mu=\left\{\mu_{n}\right\}$ is a set of functions

$$
\mu_{n}: B_{n} \rightarrow R
$$

(where R is some algebraic thing, like a group) such that

$$
\text { 1) } \mu_{n}(\alpha \beta)=\mu_{n}(\beta \alpha) \quad\left(\Leftrightarrow \mu\left(\gamma \beta \gamma^{-1}\right)=\mu(\beta)\right)
$$

2) element $a \in R$ such that

$$
\mu_{n+1}\left(\beta \sigma_{n}^{ \pm 1}\right)=a^{ \pm 1} \mu_{n}(B) \quad \forall \beta \in B_{n}
$$

detine the writhe of a braid by

$$
w: B_{n} \rightarrow Z
$$

by $\omega\left(\sigma_{1}\right)=1$ and $\omega\left(\sigma_{1}^{-1}\right)=-1$ and extend to a word by adding, ne. $\omega(\beta)=$ "exponent sum"

$$
\text { egg. } \quad \omega\left(\sigma_{1} \sigma_{2} \sigma_{1}^{-1}\right)=1
$$

exercise: 1) this is well-defivied
2) If D is a diagram for $\hat{\beta}$ then $\omega(\beta)=\omega(D)$ defied

Th m $14:$
If $\mu=\left\{\mu_{n}\right\}$ is a Markov trace, then for a link L wish $L=\hat{\beta}$ for some braid $\beta \in B_{n}$ the formula

$$
I_{\mu}(L)=a^{-\omega(\beta)} \mu_{n}(B)
$$

is a well-detived invariant of oriented links
Proof:
by $T h{ }^{m} 12$, any L is $\hat{\beta}$ for some $\hat{\beta}$
if $L=\hat{\beta}_{1}$ and $\hat{\beta}_{2}$ then by $T_{1}=13 \beta_{1} \sim{ }_{n}^{n}$
so they are related by conjugation and stabilization
conjugation: $\left.\mu_{n}\left(\gamma \beta \gamma^{-1}\right)=\mu_{n}(\beta)(b y 1)\right)$ and $\omega\left(\gamma \beta \gamma^{-1}\right)=\omega(\beta)$

$$
\therefore a^{-\omega\left(\gamma \beta r^{-1}\right)} \mu_{n}\left(\gamma \beta \gamma^{-1}\right)=a^{-\omega(\beta)} \mu_{n}(\beta)
$$

Stabilization:

$$
\left.\begin{array}{l}
\mu_{n+1}\left(\beta \sigma_{n}^{ \pm 1}\right)=\alpha^{ \pm 1} \omega_{n}(\beta) \\
\omega\left(\beta \sigma_{n}^{ \pm 1}\right)=\omega(\beta) \pm 1
\end{array}\right\} \Rightarrow \alpha^{-\omega\left(\sigma_{ \pm}^{ \pm}\right)} \mu_{n+1}\left(\beta \sigma_{n}^{ \pm 1}\right)=\alpha^{-\omega(\beta)} \mu_{n}(\beta)
$$

Let's find a Markov trace
A planar n-tangle is a disjoint union of n arcs and some simple closed curves in $\mathbb{R} \times\{0,1]$ with n arc end points in $\{(i, 0)\}_{1=1}^{n}$ and n " " in $\{(i, 1)\}_{1=1}^{n}$ up to isotopy (fixing $\mathbb{R} \times\left\{0_{0},\right\}$)

\exists a product defined by concatenation

there is an identity

the set $P T_{n}$ of planar n-tangles is a monoid (ne. "group without inverses") for $\tau \in P T_{n}$ we con form the closure $\hat{\tau}=\mathbb{1}$ close curves in \mathbb{R}^{2}

The Temperley-Lieb algebra. $T L_{n}$ is the set of formal sums

$$
\sum_{i=1}^{k} p_{i} \tau_{i}
$$

where $\rho_{i} \in \mathbb{Z}\left[A_{1} A^{-1}\right]$, A a formal variable and $\tau_{1} \in P L_{n}$
but identify anything of the form

$$
\tau \Perp 0_{\uparrow}^{0_{\text {close circle }}} \text { with }\left(-A^{2}-A^{-2}\right) \tau
$$

note: we can add and multiply elements of π_{n}
in $P T_{n}$ define elements h_{i}

note: 1)

$$
\begin{aligned}
& h_{1} h_{2+1} h_{2}=h_{i} \\
& \left(\text { and } h_{i} h_{1-1} h_{1}=h_{1}\right)
\end{aligned}
$$

3)

Th ${ }^{\text {m }} 15:$
πL_{n} is formal sums $\sum P_{k} w_{k}$, where $P_{k} \in \mathbb{Z}\left[A_{1} A^{-1}\right]$ and w_{k} are words in the h_{i}, subject to the relations 11,2), 3) above
exercise: Try to prove this! bracket
let $\rho: B_{n} \rightarrow T L_{n}$ be defined by $\rho\left(\sigma_{1}\right)=A+A^{-1} h_{i}$

$$
\rho\left(\sigma_{i}\right)=A^{-1}+A h_{i}
$$

and extend multiplicitively
to see ρ is well-defined we need to see

$$
\begin{aligned}
& \text { 1) } \rho\left(\sigma_{2}\right) \rho\left(\sigma_{1}^{-1}\right)=1 \\
& \text { 2) } \rho\left(\sigma_{1}\right) \rho\left(\sigma_{j}\right)=\rho\left(\sigma_{j}\right) \rho\left(\sigma_{1}\right) \quad|2-j|>1 \\
& \text { 3) } \rho\left(\sigma_{1}\right) \rho\left(\sigma_{1+1}\right) \rho\left(\sigma_{1}\right)=\rho\left(\sigma_{1+1}\right) \rho\left(\sigma_{2}\right) \rho\left(\sigma_{1+1}\right)
\end{aligned}
$$

for 1) we have $\rho\left(\sigma_{1}\right) \rho\left(\sigma_{2}^{-1}\right)=\left(A+A^{-1} h_{1}\right)\left(A^{-1}+A h_{1}\right)=1+\left(A^{2}+A^{-2}\right) h_{i}+h_{2}^{2}$

$$
=1+\left(A^{2}+A^{-2}\right) h_{i}+\left(-A^{2}-A^{-2}\right) h_{i}=1
$$

for 2) we have $\rho\left(\sigma_{1}\right) \rho\left(\sigma_{j}\right)=\left(A+A^{-1} h_{\imath}\right)\left(A+A^{-1} h_{j}\right)$

$$
\begin{aligned}
& =A^{2}+h_{1}+h_{j}+A^{-2} h_{2} h_{j} \\
& =A^{2}+h_{j}+h_{j}+A^{-2} h_{j} h_{i}=\left(A+A^{-1} h_{j}\right)\left(A+A^{-1} h_{2}\right) \\
& =\rho\left(\sigma_{j}\right) \rho\left(\sigma_{1}\right)
\end{aligned}
$$

for 3) we have

$$
\begin{aligned}
\rho\left(\sigma_{1}\right) \rho\left(\sigma_{1+1}\right) \rho\left(\sigma_{2}\right)= & \left(A+A^{-1} h_{i}\right)\left(A+A^{-1} h_{2+1}\right)\left(A+A^{-1} h_{1}\right) \\
= & \left(A^{2}+h_{1}+h_{1+1}+A^{-2} h_{1} h_{1+1}\right)\left(A+A^{-1} h_{1}\right) \\
= & A^{3}+A h_{1}+A h_{1+1}+A^{-1} h_{1} h_{1+1}+A h_{i}+A^{-1} h_{2}^{2}+A^{-1} h_{2+1} h_{i}+A^{-3} h_{1} h_{1+1} h_{i} \\
& A^{-1}\left(-A^{2}-A^{-2}\right) h_{i} \\
& \left(-A-A^{1}\right) h_{i} \\
= & A^{3}+A^{-1}\left(h_{1} h_{1+1}+h_{1+1} h_{2}\right)+A\left(h_{1+1}+h_{2}\right)
\end{aligned}
$$

this is symmetric in 1 and $1+1$
so $=\rho\left(\sigma_{1+1}\right) \rho\left(\sigma_{1}\right) \rho\left(\sigma_{1+1}\right) \quad\binom{$ it not clear to you }{ then work it out }
now define $\operatorname{tr}_{n}: \mathbb{T}_{n} \rightarrow \mathbb{Z}\left[A, A^{-1}\right]$
by $\operatorname{tr}_{n}(\tau)=\left(-A^{2}-A^{-2}\right)^{|\hat{\tau}|-1}$ for $\tau \in P L_{n}$ and extend linearly
finally define $\mu_{n}: B_{n} \rightarrow \mathbb{Z}\left[A, A^{-1}\right]$ by $\mu_{n}=\operatorname{tr}_{n} \circ \rho$
Th ${ }^{\mathrm{m}}$ 16:
$\mu=\left\{\mu_{n}\right\}$ is a Markov trace and the corresponding invariant of oriented links is

$$
I_{\mu}(L)=F_{L}(A)
$$

in particular, get the Jones polynomial with $t=A^{-4}$
Remark: Jones' original definition of $V_{L}(t)$ used a Markov trace (essentially) as above.
Proof:
Check: $\mu_{n}(\alpha \beta)=\mu_{n}(\beta \alpha)$
note: $\tau_{1}, \tau_{2} \in P L_{n}$, then $\widehat{\tau_{1} \tau_{2}}=\widehat{\tau_{2} \tau_{1}}$

$$
\begin{aligned}
& \therefore \operatorname{tr}_{n}\left(\tau_{1} \tau_{2}\right)=\operatorname{tr}_{n}\left(\tau_{2} \tau_{1}\right) \\
& \therefore \operatorname{tr}_{n}(a b)=\operatorname{tr}_{n}(b a) \quad \forall a, b \in T L_{n} \\
& \therefore \mu_{n}(\alpha \beta)=\mu_{n}(\beta \alpha) \quad \forall \alpha, \beta \in B_{1}
\end{aligned}
$$

(heck: with $a=-A^{3}$ we have $\mu_{n+1}\left(\beta \sigma_{n}^{ \pm}\right)=a^{ \pm 1} \mu_{n}(\beta)$
let $\beta \in B_{n}$, so $\beta=\prod_{j=1}^{k} \sigma_{2_{j}}^{\varepsilon_{j}} \quad \varepsilon_{j}= \pm 1$

recall a state s of β is a choice of A or B-splitting for each $\sigma_{i j}$

set $S_{A}=\left\{j\right.$ st. s has an A spleffing at $\left.\sigma_{j} \varepsilon_{j}\right\}$

$$
S_{B}=\{j u \quad \text { " B " }
$$

exercise: $\rho(\beta)=\sum_{\substack{\text { all } \\ \text { states }}} \beta_{s} \tau_{s}$ where $\beta_{s}=A^{\left(\sum_{j \in S_{A}} \varepsilon_{j}-\sum_{j \in S_{B}} \varepsilon_{j}\right)}$ and $\tau_{s} \in P L_{n}$ is $\prod_{j=1}^{k} g_{i j}$.
where $g_{1_{j}}= \begin{cases}1 & \text { if } j \in S_{A} \\ h_{j} & \text { if } j \in S_{B}\end{cases}$

$$
\therefore \mu_{n}(\beta)=\operatorname{tr}_{n}(\rho(\beta))=\sum_{s} \beta_{s} d^{\left|\hat{\tau}_{s}\right|-1}
$$

now for $\beta \sigma_{n}^{ \pm 1}$:
for each state s of β we get 2 states s^{A}, s^{B} for $\beta \sigma_{n} \pm 1$ according to splitting at σ_{n}
note: $\left(\beta \sigma_{n}\right)_{s_{A}}=A \beta_{s}$ and $\left(\beta \sigma_{n}\right)_{s_{B}}=A^{-1} \beta_{s}$

$$
\left|\hat{\tau}_{s_{A}}\right|=\left|\hat{\tau}_{s}\right|+1 \quad \text { and } \quad\left|\hat{\tau}_{s_{B}}\right|=\left|\tau_{s}\right|
$$

$$
\begin{aligned}
& \therefore \mu_{n+1}\left(\beta \sigma_{n}\right)=\operatorname{tr}_{n+1}\left(\rho\left(\beta \sigma_{n}\right)\right)=\operatorname{tr}_{n}\left(\sum_{\substack{\text { states } \\
\text { sof }}}\left(A \beta_{s} \tau_{s_{A}}+A^{-1} \beta_{s} \tau_{s_{B}}\right)\right) \\
&=\sum_{s}\left(A \beta_{s}\left(-A^{2}-A^{-2}\right)^{\left|\hat{\tau}_{s}\right|+1}+A^{-1} \beta_{s}\left(-A^{2}-A^{-2}\right)^{\left(\hat{\tau_{s}} \mid\right.}\right) \\
&=\left(A\left(-A^{2}-A^{-2}\right)+A^{-1}\right) \mu_{n}\left(\sigma_{n}\right) \\
&=-A^{3} \mu_{n}\left(\sigma_{n}\right) \\
& \text { similarly } \mu_{n+1}\left(\beta \sigma_{n}^{-1}\right)=-A^{-3} \mu_{n}\left(\sigma_{n}\right)
\end{aligned}
$$

Check: $I_{\mu}(L)=F_{L}(A)$
If $L=\hat{\beta}$ and D is the diagram for L coming from β then one can check that \circledast shows

$$
\mu(\beta)=\langle D\rangle \leqslant \text { Kauttman bracket }
$$

we also saw $\omega(\beta)=\omega(D)$
so $\quad I_{\mu}(C)=-A^{-3 \omega(D)}\langle D\rangle=F_{c}(A)$
by def n

