
HIGroups

A. Basic Group Theory
a group is a set G together with a binary operation C usually called

multiplication)
• : G x G → G : Ca

. b) I → a . b

satisfying i ) I an element e EG set
.

e. g
= g. e -

- g H
g E G

e is called the identity element

2) for each g EG there is an element g
' EG s . t .

g. g
'

= g
:
g

= e

g
' is called the inverse of g and denoted g

- '

3) for all g , ,g . ,g ,
in G

I g , .gr ) .

g ,
= gil gig, ) associativity

examples :

i ) (IR
,

t )
,
( Q

,
t )

,
( Z

,
t )

,

C a
,

t ) are groups

O is the identity element

- a is the inverse of a

2) (IN
,

t ) is not a group ( no identity element )

3) I IN 403
.

t ) is not a group I no inverses )

4) ( Q - lol
,

x )
,

( IR - 103
,

x )
,

( E - lol
,

x ) are groups

I is the identity element
'

Iq is the inverse of q

5) let Zp = integers modulo p

( that is
,

call 2 integers equivalent n
,

m equivalent
modulo p it n - m is a multiple of p

Zp=set ofequivalence classes )

so Zp = { o
, 1,2 , . . .

, p - I }



our binary operation is t

ftp.t ) is a group

e.g .

#
y

is
 + O I 2 3

O O I 2 3

I I 2 3 O

symmetric group
2 2 3 o I

y
on n elements 3 3 O I 2

G) let Sa = set of permutations of { 1,2, . . .

,
n }

i.e
.

o e Sn is a bijection or :{ 1,2 , . . .
n } → { 1,2

,
. . . ,

n }

the binary operation is como sitcom

exercise . 1) Isn
,

o ) is a group with identity = identity map

4 Sa has n ! elements

e± : in S
,

let [ iii. k ) be the map
1 t I

e.g .
[ 2

, 1,3 ] is the map
z te j I 1-7 2

3 1-7 k 2 1-7 I

3 1-7 3

s
,

has 6 elements

[ I
,2,33

,
[ I

, 3,23
,

[ 2
, 1,3 ]

,
[ 2,3

,

I ]
,

[ 3
, 1,2 )

,
C 3,2

,

I ]

note : { 2
,

I
,

3) of 1
, 3,2 ] = [ 2,3 ,

I ]

[ 43,2 ) of 2
, 1,3 ) = [ 3

,
I

, 2)
#

so multiplication is not commutate

a group is called abelian it a. b -

- b. a for all a. bEG

examples 17
, 41,5 ) are abelian

,
6 ) is not for n 23

7) let On be a regular n -

gon n =3

µ, ,

let Dn = symmetries of On

with multiplication n -

- 4

11/1
,being composition

Dn is called the dihedral group



e.g .
n =3

y ¥ 2¥ let x -
- rotation by o_O

y = reflection about y - axis

let e- identity
y - axis

note : x. X = rotation by Zoo

X. Xo X = rotation by 300 = e

y .  y = e

similarly for n -

gon there is rotation by ¥ denoted x

and x
"

-

-

e

and reflection in y - axis I so y
2

= e )

exercise i ) x. y . x. y = e in Dn I any a )

2) every element in Da can be written as

xiyi
some i. j

3) Dn has 2n elements

8) let X be any topological space

let Home I X) = { all homeomorphisms of X }

exercise this is agroup

let Mod C X ) =
Home o ( X )

he

called the where ~ is isotopy
mapping class group

exercise : this is a group

lemma I

let ( Gi ) be a group
1) it e.  , ez EG such that eig -

- g. e
,

= g = eig-g.ee Hg e G

then e. = ee ( identity in G unique )

2) it g , ,g ,
EG such that g. g ,

= gig = e = gig =

g. ga ,
then g , -72

( in
-

verses are unique)



Proof :

2) gz= gie = gz . (go g.) =Lgig ) . g ,
= e . g ,

=

g ,

1) e
,

= e
,

. er = ez
¥7

If ( G ;) and ( H
,

x ) are groups
a homomorphism is a map f : G → H suchthat fl a. b) = fla ) x f Cb)

an isomorphism is a bijective homomorphism
T fundamental equivalence relation forgroups

try to understand groups upto isomorphism
Remark

homomorphisms of groups are like continuous maps of

topological spaces he "

preserve
"

structure )

isomorphisms of groups arelike homeomorphisms of

topological spaces

lemma 2 .

If f : Gt H is an isomorphism ,
then f -  '

i H  → G is

a homomorphism ( and hence an isomorphism)

Proof . given a
,

be H

I ! a
'

,
b

'

EG such that f Ca ' ) - a
,

f lb
'

) = b

so f la
'

. b
' ) - f la ' ) x f- I b

' ) = a x b

thus f
- ' ( a x b) = a

'
. b

'

= f
- ' la ) . f -  '

( b ) #

examples :

1) f : ( Z
,

t ) → C Z
,

. ) : X to n . X ( n a fixed integer )

is a homomorphism since

f- I at b) = n . ( at b) = n - at n . b = f (a) tf lb )

if nttl
,

then f not a bijection ,
so not an isomorphism

if n=±i
,

then f is an isomorphism

exercise is if 6 a group , then show
Iso I G) = { isomorphisms of G }



is a group under composition

2) Iso ( Z ) E Zz

2) f : ( Z
,

t ) → ( ¥
p ,

t ) : x ↳ Ex ]
← equivalence classmod p

is a homomorphism since

f- I at b) = Eat b) = I a ] t [ b ] = f Ca ) tf I b )

3) the only homo morphis ftp.t ) → ( A
,

t ) is the trivial map

indeed it f I E 13 ) = n
,

then n -

- f- I ED ) = f I Ebt . . .  t [ is )
-

ptl times

= ht . . .  t n = ( ptl ) n

so p n = O : n = O

4) by lemma HI
.

2 it iseasy to check

Mod C s
' ) = Zz

5) note S
,

and Z
, are not isomorphic even though they both have

6 elements ( S
,

not abelian
,

ZIG is )

lemma 3 .

If f : G → H a homomorphism,
then

, ) f leg ) -

- e
H

( takes identity to identity )

2) H g
-

1) = ( f (g)T
'

( takes inverses to inverses )

Proof .

1) flee ) =  f- leg . eo ) = f- leg ) . f-Ceo )

multiply both sides by f leg )
"

to get

e H
= flea . HeHIfled . fled . f-Ceo ))

- '

= flew

2) Hg
- 1) = f (g

- 1.
g. g

- 1) = f Cg
-  '

) - fig ) . f- I g
- I )

multiply both sides by Hg-  'D
- '

to get

EH = f Ig " ) I ft g
- I))

- '
= fig - t I . fig) . fig - it . ( Hg - 'D- '

= fig - 1) of cg)

multiply both sides by I Hg ))
"

to get

f- Ig )
- '

= f Ig
-  ' )

L#



lemma 4 .

a homomorphism f : G -7 H is

injective f
-  '

( eat = Leo }

Proof ⇐ ) it f is injective we have f-
' le HI -

- led
since we know f- feel = EH

⇐ ) suppose f (a) = f lb )

then f ( a-
 '

b) = fCa )
- I

fl b) = e
µ

so a-
' b e f

-  '

( eat = { e
G } i . a-

 ' b-

- e
,

so a  =b and f is one - to - one #

let ( Gi ) be a group

a subgroup of G is a subset HCG such that a. beH ⇒ a - be H

and a C- It ⇒a
-  '

e It

we denote this by He G

exercise .

H is a group I with operation coming from G )

examples :

D if G is a group and a EG
,

then let la ) - all powers of a

exercise . La ) is a subgroup of G

(a) iscalled the cyclic subgroup of G generated by a

it I a e G s .
t

.

G = La ) then G is called a cyclic group
2) n e Z

,
then In ) = all integers divisible by n

this is a subgroup of #

exercise Ln > is isomorphic to # ⇐ n ± O

3) S
'

c E the unit complex numbers
a

I s
"

,

. ) is a group I where . is multiplication )
.

. pi
let g

-

-
et some n > o an integer . .

(g) a s
' •

.

•
s

'



exercise . Lg ) is isomorphic to Zn

let Hc G be a subgroup
a right coset of Hi is

Hg = { hgl he H } CG

we say g is a representative of the coset

examples .

.
.

, H  = I e
'

) < s
'

.

,o
Hg

let g = e' 0

A @

then Hg = { eh ¥ to )
}

•  •

T nota subgroup if get It

2) let l be a line in loft )
at I

le IR
'

,
te IR

'

IR
'

et  = line parallel to l

through t

lemma 5 .

If H L G
,

then

Ht  = Hs ⇐

tis
- I E H

Proof . ⇐ ) if Ht  = Hs
,

then t E Hs

so t =

his
for some h E H

:
. t . s

- I
= h E Her

⇐ I it tis
- '

= he H then t -
-

hisso if xe Ht
,

then x = hit some ha
,

EH

'

. . x = hx . ( h - s ) -

- thx . h ) . s

-
c- H

SO X E Hs

can similarly show Hsc Ht
L#



lemma 6 :

If He 6
,

then two right co sets are either equal or disjoint

Proof . it x E Ht n Hs
,

then

hit
-

- X =

his
for h

,
EH

:
.

t 's- '
= hi ! h

,
EH and so Ht - Its by lemma 5L#

lemma 6 says co sets of H decompose G into disjoint sets

If Hc G
,

then the index of H in G is the number of right coset

of H in G
,

and is denoted [ G : H ]

examples
1) n E Zt

,
Ln > < Z

at
' to

an
N

x x x x x x x x x x

( n ) t O
• a o a a a O o a  o

-  4 - 3 - 2 - I 0 I 2 3 4 5

( n ) t I

.:

( n ) th - I )

( n ) t n = L n ) so [ Z : Ln > ] = n

→ Lei y a s
'

for 0 Etc ZITget disjoint co sets 4 e
' ¥

7 e
't

so [ S
'

: I e' ¥7 ] is infinite

the order of a group
G is the number of elements in G

it is denoted 161

lemma7 ( Lagrange) :

G a finite group and HCG
,

then

161=16 : HIHtt

Proof : there are [ G : H ] disjoint coset of H each containing
IHI elements

#



examples .

1) 4 [ 3 ] ) L Z
,

Lol C ' I 123 HI C43 c.s ]
 @  a  O  O

X X X x x x

( CD )

( [ 3 ] ) + I

{ I 33 ) -12 So I Zg : ( C 337 ] =3

KE 3371=2

I 761=6--3.2 = [ to :( C 3D ] . I Lcs ] > I

2) Fanta : if p is praise and 161 =p , then

G is cyclic land hence abelian )

Indeed
,

if G has any element gie ,
then

(g) is a subgroup ¥ I e }

Kg > I divides 161 so is p or 1

so must be p ,
:

.
G = Sg >

If He 6
,

then a conjugate of H in G is

g. Hg-  '
= { ghg

-  ' I h E H }

H is called a normal subgroup of G if

g H g
- I

= H for all g EG

this is denoted Ho G

Tha 8 .

If HOG
,

then the set of right coset of H form a group

The group is denoted UH and has order [ Gi H ]

Proof : multiplication is just
'  ' set wise

"

multiplication



re .

S
,

T c G
, then S . T = { sit the S

.
t ET )

since Ha
,

subgroup

note : (Hs ) ( It t ) felts ) ((s
-  ' Hs ) t ) = ( Hss -  ' ) I Hst ) = H I Hst ) ! Hst

T
H  normal check this

so set wise multiplication of co sets is a coset !

easy to see H -

- He is the identity element
,

High I is inverse of Hg ,

andmultiplication is associative
¢⇒

example :

( n ) LZ

note :  C-m ) + L n ) t I m ) = { - m - ink t ml k e Z }

= { nhl k E Z ) = L n )

so In ) OZ

from above [ # : In ) ] -

- h so Zhen > has order n

define to : Ztkn ,
→ Zn

4 n ) t m l→ [ m ]

easy to check 4 is a bijective homomorphism

so In I Zkm ,

if lo : G
,

→ G
,

is a homeomorphism , then the kernel of lo is

her to = 4-
'

Ced
= { gEG : 4cg ) -

-

ez
}

and the image of Io is here e
,

is the

im to = { peg, : g e G
, }

identity in G ;

lemma 9

to : G
,

→ G
,

a homomorphism ,
then

her 40 G
,

and im lol Gz



Proof .

g , ,g ,

C- her to
,

then

lol gig , ) = 4cg ,
) o 91gal = ez '

ez = ez

so gig ,
E her to

gE her 0
,

then

lol g-
 ' Ii High

- '
= led

-  '

se
,

so g-
' C- her 4

:
. her to L G

,

now if g e G
, ,

we need to see

g I her 4) g-
'

= her to

it 5 e g (her4) g-
'

,
then 5 -

- ggg
- '

some g- E here

thus
peg I = lol g g- g-

' ) = 4cg) . kg I . Ng
-  ' I = ftp.eidofg) )

"

= pig ) .  lolCgl )
- '

= ez

:
. 5 e her to

similarly,
it g- E her to

. you can check JE g Ikerd g-
'

so her to o G
,

exercise . show im lol Gz
EH

exercise . if 0 : G
,

→ Gz is a homeomorphism ,
then show

↳ hero, E in 01 I this is the It isomorphism
T

isomorphic theorem )

given two groups A and B
,

the direct sum of A and B
,

denoted

A  ④ B
,

is the set

A x B = { la .
b ) : a c- A and be B }

with multiplication defined component wise

( a ,
b) . C C

,
d) = Ca . C

,
b. d)



-

.

. .

-

-

example . I ⑦ It ordered pairs of integers I a .
m )

. . . .

( n
,

m ) . ( k
, e) = ( n t k

,
m te )

• •  a  co

• ⑥ • •

@ a  •  

⑧
( .

,
I

,
I

Big Theorem

any finitely generated abelian group is isomorphic to

ME see below

Z  to . . .  ④ Z  ④ ftp.n,
. . .

④ # pin
.

where p ,
are prime ( not nec .

district )

he ,
n are integers

B Group Presentations

We now givea nice way to represent a group

let X be any set

the free group generated by X is the set FIX ) of all "

reduced

words
"

in the letters X u X
-  '

I where X
"

is just acopy of X
,

we denote an element of X
- t

corresponding to x EX
, by x

-  ' )

here by reduced word we mean if you see xx
"

or x
- '

x
,

remove it

from the word

examples
1) X = Ix ) then the words are

¥÷,
denote :!

and

÷:* .

deme ¥:
also have the empty word which we denote e = X

°

note : we also have xxx
" but not reduced

but we can
" reduce

"

it to X

2) X = la ,
c

,
d

,
t

,
o }

so words are like : cdaotg
act a

- '

o

- '
. . .



define multiplication on FCX) by concatenation followed by reduction

examples
1) X -

- { x }

X
'

. X
5

= x
?

x
- 2

. X5 = x
- '

x
- '

xxxxx = XXX = X
'

z ) X = f a. b } then

( a
'

ba
- ' b ) . ( b

- '
as) -

- a
' bar

exercise

1) FIX ) with multiplication above is a group

4 note we have a map i :X → FIX)
x → x

Show that givenany function f- :X → G
,

where G is some group ,
there is a unique

homomorphism F : F CX ) → G satisfying
fX → G

i I j Foi -
- f

FIX )

3) it there is a bijection j :X → Y then FIX) and FLY)

are isomorphic

411×1=1 ,
then F CH I Z ( abelian )

but if I Xl > I
,

then FIX ) is non - abelian

Hint: map
F CX) onto something non - abelian

given a collection R of words in X u X
"

,
let ( R ) be the smallest

normal subgroup of FIX ) containing R

then denote by ( x IR ) the group
f , , LR )

this is called a group presentation



if 6 some group and GE SX IR ) then we say HI R ) is

a presentation of G

it X is finite
, say I

g.
, . . .

gu
}

,
and

R is finite
, say I r

, , . . .

rml
,

then

we usually write ( g , , . . .

, gnlr , ,
. . . rm )

If G has a presentation Where X is finite we say
G is finitely generated

if X and R are finite
,

then we say G is finitely presented

Intuitively Lg , , . . .

, guk , ,
. . . , rm ) is the group of all words in g ,

and gj
'

where it you ever see an ri you can remove it ( you can

also insert it anywhere )

examples:

j Lg Ign > this is all words in g , g-
'

,
re .

. . .

, g
- 2

, g-
'

,
e

, g , 5,93,
. . .

, g
"

, g
"

,
.

. .

s

whiffinga sets ( but gree so g
" "

= g
"

. g -

-

gof Sga >
,

but we

just interpret g-
'

= g
"

g
- '

= g
" - t

words as their
w sets . easy to see every element is of the form gk,

O E ka n

exercise Lg Ign > → En is an isomorphism
g

k t Ck ]

2) a presentation of Z is L g 107

3) check a presentation of Dn is

I x
, y I x

"

, y ? xyxy )

4) consider L x
, y I xyx

- '

y
- '7

-
← this iscalled a commutator of

x and y ,
it is usually denoted Cx

. Y ]

note
,

the relation says Xy x
-  '

y
- '

= e

ie . X y
-

- y x Cx and y commute )



so any word in the above group can be written

Xnym for some a
,

m E It

exercise show Z ④ Zf E l x ,y I xyx
-  '

y
- ' )

exercises
1) Every group G has a presentation

Hint : let X = G

2) let G = cg , , . . .

, galn, ,
. . . , rn )

,
and H any group

of e
.

choose elements hi
,

. . .

,
ha E It

j × § There is a unique well -defined homomorphism

is to : G → H
EE Q
J s §
§ g

, sending g ,
to hi it

"

relations respected
"ER§

he .

if

rig! . . .

gin,
then hii . . . hinh -

- en )

C. Braid groups
and the Jones polynomial

a n - string braid is a disjoint union of arcs in R' xd. B with

end points I to,
i

,
o ) } c IN '

x lol

{ Con ;D } c IN x k )

such that the restriction of the projection IR 'd o
, D → Co. I

to each arc is monotonic
112443

' I

I¥7aix lol✓

two braids po , p, are equivalent if 3- I - parameter family of

braids ft ,
o Et El

, going from Polo B,

we write Go =p ,
if equivalent



Remark It is a C non - obvious ) fact that Go =p ,
⇒ Bo and p ,

are

isotopic in NxCoil ]
, keeping end points fixed

the product of 2 n - strand braids is just concatenation

Y

,

"
, ,
} Pipa heparan G 'D to so

.
D )

x
lemma to . f

the a - strand braidgroup

The set Bn of n - strand braids is a group with this product

proof

Identity
: is

µ . . )

associativity : clear

: p
- '

= reflection of B in 112443inverses

A

* .

j It I

let on.  in Bn
,

I Ei en - i
,

be the braid 1-  - .
- - . I

i 2 t  I

-



notice that

1) 99+19=9+19 one ,
a

"

Reidemeister 3
"

I 71-1 It 2 7 It  I It 2

2) o.o ,
- o

,
o

,
it Ii-It > I

. .  .

'

ly
I at  I j j ti 7  att j jet

note : Reid emeister 2 corresponds to group relation

moi
'

-
- e Y

,

← It
Thall :

Bn has presentation
P = ( o

, , . . . oh ,
I oration = one, 99  + ,

IE is n - 2
, 99=0,9 ,

le - j I > 1)

Proof: given any braid p , can isotop so crossings occur e at different levels

#
03
o .

- I so p is a product of o
, , . . .

,
on . ,rift o

.

"

-
Oz

i 9
,

. . .

, on generate Bn

from what we know about group presentations ,
since we have

relations above
,

we have a homomorphism

P -7 Bn
and we just saw its surjective

injective is a braid version of Re idem eisler 's Th '

( won't do here ) ¥7

given a braid B orient strands from1124103 to 1132×43

the closure of p ,
denoted I ,

is obtained as shown



examplessine on

* µ. , . * o :
" Innit:L 't

z ) in Bz

In = kn ) torus link

3) in Bz

⇐io = figure 8 knot

The 12 I Alexander 1923 ) :

every oriented link is the closure

of a braid

sketch of proof
note we can translate I so it is winding about to . o ) i -

and if K has a diagram such that a component
( in polar words ) always decreasing ,

then you

can csotop allcrossings to left hand side

and see K as a closed braid

so how can you arrange 0 word condition ?

a wrong wayIt mark strands going
"

wrong way
"

.





the equivalence

relation

on the set It
,

Bn generated by
1) conjugation in Ba and

a) stabilization

is called Markov equivalence and denoted I

Th ' 13 ( Markov 1936 )

I ,

-
- B ⇐ B,

I Be

from above we have proven ⇐ )
, the other implication is another

Reidemeister type th ' I wont do here )

Remark We have now turned studying knots into studying groupe I

andan equivalence relation ) !

so to get an invariant of links we can look for a Markov trace .

a Markov trace µ = fun ) is a set of functions

un :Bn→ R

I where R is some algebraic thing ,
like a group )

such that

Dunlap ) -

- Ma C pal I ⇒ ulrpr
' I -

- ups )

2) F element a E R such that

um , Ip on
't ' ) = a

't '

un CB) Vp t Ba

define the writhe of a braid by
w : Bn → #

by w ( q ) = I and w to
,

-  ' I -
- - t and extend to a word

by adding ,
i.e .

we p ) =
 "

exponent sum
"

e.g .
w ( o

, choi ' ) = I

f.
writhe of

exercise it this is well - defined diagram we

2) it D is a diagram for B then w Ip ) i w ( D) defined
earlier



Tha 14 .

If µ= fun ) is a Markov trace
,

then for a link L with EB

for some braid ft Bn the formula

In 14 = a
- w

Mn I B)

is a well-defined invariant of oriented links

Proof .

by Th ' 12
, any

L is I for some §

It L = I
,

and fu then by The 13 pimps

so they are related by conjugation and stabilization

conjugation µnl8pr
- D= Mn Ip) I by l ) ) and w ( 8ps

- ' I = w Ip )

: .

a-
wiser

-

Yunker - D= a
- ul

un IN

stabilization une , Ip on
' 't a

± '

wa CB)
⇒

- ol Boi '

tunedpoi ') = a-
we B)

µ . Ip)

w Ip on
' ' I -

- w ± ,
} ×

¥7

Let's find a Markov trace

A planar n - tangle is a disjoint union of narcs and some simple
closed curves in Axford with n arc end points in { l is O) ) I ,

and n u  i ' in I Li .
I ) I! ,

upto isotopy ( fixing 112×10.13 )

O
' " " "

Rx lol

I a product defined by concatenation

%) ?
I % ÷}



there is an identity

IN
the set PI of planar n - tangles is a monoid I i.e .

"

group without

inverses
" )

for T E P Tn we can form the closure I = I close curves in IR
'

-
.

The Temperley - Lieb algebra TL
n is the set of formal sums

£ Piti
2=1

where pi E ZEAA
" ]

,

A a formal variable

and T
,

e

Pln
but identify anything of the form

710 with C-A
'

- A
'Y re

T
close circle

note : we can add and multiply elements of TL
n

in P

Tn
define elements hi i 2 "

~
'

I . ..lv/..f
' sis a - i

"

hooks
"

n

2 It I

I It I it 2

note i ) U

)
fun haha . hi hi

Y I and hi ha
. , hi h

. )



" ii iii.
"

:*:*:
"

. :÷:: "

3)
u

"

g
. " hi i C - A

'
- A

- Y hi

^

That 5 :

TL
a

is formal sums I

pawn, where

pg
E Z CA .

A
" ] and

Whare words in the hi
, subject to the relations

11,2 )
,

3) above

Motivation : recall Kauffman
exercise ' Try to prove this ! bracket

£ L x ) = A C) t A-
 '

CH

let p : Bn → TL
.

be defined by pl oil = At A-
 '

h
;

pl of ) -

- A
'

't Ahi

and extend multiplicatively
to see p is well-defined we need to see

, ) pl 9) ploy
- ' I -

- I

n p C on pco,
) =p (g) pco,

) le- j I > I

3)pl on ) pl out pl oil = plow poor) p cored

for D we have plod pig
-  ' I -

- I At A-
'
h

,
) l A

- '
t Ah

.
) = It #A-4 hit hi

= It I A 't A
- 2) hi  t f - A

'
- A

" ) hi  = I

for 2) we have p to ) plod = I At A- '

he ) I At A-
' h;)

= AZ th
,

th ;
 t A

' '
h

, hj
= A

'
th

; th ;
 t A-

'
h

,
hi  = I At A-

 ' h
,
) I At A

'

ha )

= plo ,
) pig )



for 3) we have

pthlpcoeilplo .
) -

- LA- IA- ' hi ) I At A
 '

ha ! ( At A
 '

h
.
)

= I A' that hut A
"

h
, he ,

) ( At A-
'
h

,
)

= As t

AX,
t Ah

,  + it A-
'

haha ,
+ A hit A

' hit A'
'

ha
, hitA'h,h ;-

-

A-
'

ft- A
-2) hi hi

I  I HA
- hi

= As t A
-  ' ( h.hu , that ,

he ) + A that , the )

this is symmetric in 2 and It '
it not clear to you

so = plow , ) pco. ) pco.ec ) ( then work it out )

now define trn : TL
.

→ ZCAA
' ' ]

by truce ) -

- I - AEA " )
# t '

for TE Pla

and extend linearly

finally define µ .
: Ba → ZEA , A-

' 3 by Mn = trop
Th " 16 :

it { un } is a Markov trace and the corresponding
invariant of oriented links is

Ink ) = ECA )

in particular , get the Jones polynomial with t -

- A
4

Remark . Jones '

original definition of Yet ) used a Markov trace

(essentially) as above
.

Proof :

Cheech: Ma ( apt = Mn Cpd

note : T
, Th E Pln

,
then ⇐ =  TI

"iv. . seen

: µ . Captain (pal V-d.peBy
✓



Ched : with a - - A
3

we have une ,
( poi ) -

- a'
'

un Ip)

let p e Bn
,

so A -

- II,9,9Ei
-

- ± '

,
when you multiply

and plp ) = II,
I AE

i.
I + A-

so
hi

,
) each term corresp .

to a state

recall a state s of B is a choice of A or B - splitting for

each of .

µA-smooth ) (
-

ofi B-smoothing -j

set

⇐
I j set

.

s has an A splitting at og? }SB-

- { j u " B ' ' " }

exercise : pep ) = I posts where ps= Atsa
"  -

E-sis )

all h

States and Tse Pln is ¥92;

1 it je Sa
where 95 I h

,;
it j t SB

:
. unfp ) -

- trnlpcpl ) = Ep ,
d

' - I

④

now for point '
.

I - . .

a. s
.

for poi '
for each state s of B we get 2 States s

according to splitting at on

net: (Bon )
sa

- Aps and (pods
,

-- A
 '

Ps

I Tsai-

- IEsl -11 and 15,1--1 Tsl f.

iti ÷⑤"it
t .

I .

t



:
. until pon ) -

- the , ( pl Pon )) =

trnlqoq.es/ABsTsatA-'BsTs,
) )

^  n

= § (Aps I - A
'

- A -714
't

't A-
 '

p , far . A -4141)

= (At - A
'

- AT t A
" ) Mn I on )

=  - A
'

union )

similarly Mae ,
I poi

' ) = - A-
'

un C only
Checky: In 14 = ELA )

If L = B and D is the diagram for L coming from p

then one can check that ④ shows

µ (p ) = ( D ) f Kauffman bracket

of D

we also saw w I B ) = w I D )

so I
µ

14 = - A-
3W (D)

L D > qFel A )

by defer
#


