V The Fundamental Group
intuitively the difference between

is the "number of holes"
How to make this precise?
note: if γ is any loop in s^{2} then it looks like it can be shrunk to a polit

but there are loops in T^{2} that cont be shrunk

and others

and looks like even more in Σ_{2}

we want to make this precise
The idea is to "probe the topology of a space with loops mapped into the space"
Remark: you might want to think about "probing the topology" with things beside loops!
A. Definition of the fundamental group
let X be a topological space
fix a posit $x_{0} \in X$ (call x_{0} the base point)
a loop in X based at X_{0} is a continuous map

$$
\gamma:[0,1] \rightarrow x
$$

such that $\gamma(0)=\gamma(1)=x_{0}$

exercise: This is the same as a continuous map

$$
\tilde{\gamma}: S^{\prime} \rightarrow X \text { with } \gamma((1,0))=x_{0}
$$

unit circle in \mathbb{R}^{2}
two loops a homotopic, denoted $\gamma_{1} \sim \gamma_{2}$, if there is a continuous map

$$
H:[\underset{s}{[0,1] \times[0,1]} \rightarrow X
$$

such that

1) $H(s, 0)=\gamma(s)$
2) $H(s, 1)=\gamma_{2}(s)$
3) $H(0, t)=H(1, t)=x_{0}$
note: H gives a "continuous family of loops from γ_{1} to γ_{2} "
egg. $H_{t}(s)=H(t, s)$ is a loop for fixed t
lemma 1: \qquad
Proof: (reflexive) clearly $\gamma \sim \gamma$
just take $H(s, t)=\gamma(s) \quad \forall$ sand t
(symmetric) if $\gamma_{1} \sim \gamma_{2}$ by $H(s, t)$ then let

$$
\tilde{H}(s, t)=H(s, 1-t)
$$

so

$$
\begin{aligned}
& \tilde{A}(s, 0)=H(s, 1)=\gamma_{2}(s) \\
& \tilde{H}(s, 1)=H(s, 0)=\gamma_{1}(s) \\
& \tilde{H}(0, t)=\tilde{H}(1, t)=x_{0}
\end{aligned}
$$

and we see $\gamma_{2} \sim \gamma_{1}$
(transitive) if $\gamma_{1} \sim \gamma_{2}$ by $H\left(s_{1} t\right)$ and $\gamma_{2} \sim \gamma_{3}$ by $G(s, t)$
then set

$$
\tilde{H}(s, t)= \begin{cases}H(s, 2 t) & 0 \leq t \leq 1 / 2 \\ G(s, 2 t-1) & 1 / 2 \leq t \leq 1\end{cases}
$$

(continuous by Th ${ }^{\text {III IT) }}$
easily check \tilde{H} gives $\gamma, \sim \gamma_{3}$
here is a "picture proof" that gus the idea how to get the formula above
to define a homotopy we need to define a function with domain

we know on the boundary we need

we just need to say what it is on the interior we do that by
 x. where this means H with + variable scaled similarly for G
set $\pi_{1}\left(X, x_{0}\right)=\left\{\right.$ homotopy classes of loops in X based at $\left.x_{0}\right\}$
we claim this is a group!
multiplication is just path concatenation

$$
\left.\left(\gamma_{1} * \gamma_{2}\right) / s\right)= \begin{cases}\gamma_{1}(2 s) & 0 \leq s \leq 1 / 2 \\ \gamma_{2}(2 s-1) & 1 / 2 \leq s \leq 1\end{cases}
$$

this is well-defined and continuous since

$$
\gamma(2(1 / 2))=\gamma_{1}(1)=\gamma_{2}(0)=\gamma_{2}\left(2^{(1 / 2)}-1\right)
$$

well $*$ is well defined on loops but what about homotopy classes of loops?
suppose $\gamma_{1} \sim \gamma_{2}$ by H and $\delta_{1} \sim \delta_{2}$ by G
then $\gamma_{1} * \delta_{1} \sim \gamma_{2} * \delta_{2}$ by

that is

$$
\tilde{H}(s, t)= \begin{cases}H(2 s, t) & 0 \leq s \leq 1 / 2 \\ G(2 s-1, t) & 1 / 2 \leq s \leq 1\end{cases}
$$

so $[\gamma] *,\left[\varepsilon_{1}\right]=\left[\gamma_{1} * \delta_{1}\right]$ is well-defined on $\pi_{1}\left(X, x_{0}\right)$
Th ${ }^{m}$: \qquad
we call $\pi_{1}\left(X, x_{0}\right)$ the fundamental group of X (based at x_{0})
Proof: let $e:[0,1] \rightarrow X: s \mapsto x_{0}$ be the constant loop
(lain: [e] is the identity element
Pf: let $\gamma:[0,1] \rightarrow X$ be any loop
then

$$
\gamma * e:[0,1] \rightarrow x: s \mapsto \begin{cases}\gamma(25) & 0 \leq s \leq \frac{1}{2} \\ x_{0} & \frac{1}{2} \leq s \leq 1\end{cases}
$$

now

so $H(s, t)=\left\{\begin{array}{cc}\gamma\left(\frac{2 s}{1+t}\right) & 0 \leq s \leq \frac{1+t}{2} \\ x_{0} & \frac{1+t}{2} \leq s \leq 1\end{array}\right.$ is a homotopy $\gamma * e \sim \gamma$ (similarly $\gamma * e \sim \gamma$)

Claim: $\gamma:[0,1] \rightarrow X$ has inverse $\bar{\gamma}(s)=\gamma(1-s)$
Pf:

5

Homology $\gamma * \bar{\gamma}$ to e
let $\gamma_{t}=[0,1] \rightarrow X: s \longmapsto \gamma(+s)$
(only go along γ to $\gamma(t)$)

so

$$
H(s, t)= \begin{cases}\gamma((1-t) 2 s) & 0 \leq s \leq \frac{1}{2} \\ \gamma(1-t(2-2 s)) & 1 / 2 \leq s \leq 1\end{cases}
$$

is a homatopy $\gamma * \bar{\gamma}$ to e similarly $\bar{\gamma} * \gamma \sim e$
Claim: multiplication is associative
Pf: given loops $\gamma_{1}, \gamma_{2}, \gamma_{3}$ need to see

$$
\left(\gamma_{1} * \gamma_{2}\right) * \gamma_{3} \sim \gamma_{1} *\left(\gamma_{2} * \gamma_{3}\right)
$$

exercise: write down homotopy
let $f: X \rightarrow Y$ be a continuous map

$$
x_{0} \in X \text { any } y_{0}=f\left(x_{0}\right)
$$

given $\gamma:\{0,1] \rightarrow X$ a loop based at x_{0}
then $f \circ \gamma:[0,1] \rightarrow Y$ is a loop based at Y_{0}
if $\gamma \sim \tilde{\gamma}$ by a homotopy $H(s, t)$ then $f \circ H:[0,1] \times[0,1] \rightarrow Y$ is a homotopy for to for
so for each $[\gamma] \in \pi_{1}\left(X, x_{0}\right)$ we get a well-detived $[f \circ \gamma] \in \pi_{1}\left(Y, Y_{0}\right)$ we define

$$
\begin{gathered}
f_{*}: \pi_{1}\left(x, x_{0}\right) \rightarrow \pi_{1}\left(y, y_{0}\right) \\
{[\gamma] \longmapsto[f \circ \gamma]}
\end{gathered}
$$

Th ${ }^{\text {m }}$ 3:
f_{*} is a homomophom
Proof: $\left[\gamma_{1}\right],\left[\gamma_{2}\right] \in \pi_{1}\left(x, x_{0}\right)$

$$
\gamma_{1} * \gamma_{2}(s)= \begin{cases}\gamma_{1}(2 s) & 0 \leq s \leq 1 / 2 \\ \gamma_{2}(2 s-1) & 1 / 2 \leq s \leq 1\end{cases}
$$

$$
\begin{aligned}
& \text { and } \\
& \left(f \circ \gamma_{1}\right) *\left(f \circ \gamma_{2}\right)= \begin{cases}f \circ \gamma_{1}(2 s) & 0 \leq s \leq 1 / 2 \\
f \circ \gamma_{2}(2 s-1) & 1 / 2 \leq s \leq 1\end{cases} \\
& \text { so } f \circ\left(\gamma_{1} * \gamma_{2}\right)=\left(f \circ \gamma_{1}\right) *\left(f \circ \gamma_{2}\right) \\
& \text { ae. } f_{*}\left(\left[\gamma_{1}\right] *\left[\gamma_{2}\right]\right)=f_{*}\left(\left[\gamma_{1}\right]\right) * f_{*}\left(\left[\gamma_{2}\right]\right)
\end{aligned}
$$

exercise: 1) id $d_{x}: X \rightarrow X$ the identity, then $\left(i d_{x}\right)_{x}: \pi_{1}\left(x, x_{0}\right) \rightarrow \pi_{1}\left(x, x_{0}\right)$ the identity
2) if $f: X \rightarrow Y$ and $g: Y \rightarrow Z$, then $(g \circ f)_{*}=g_{*} \circ f_{*}$
two maps $f, g: X \rightarrow Y$ are called homotopic if \exists a continuous function

$$
H: X \times[0,1] \rightarrow Y
$$

such that $H(x, 0)=f(x)$ and $H(x, 1)=g(x)$
note: $H_{+}: X \rightarrow Y: x \mapsto H(x, t)$ is a continuous family of maps interpolating between f and g
so maps are homotopic if there is a "continuous deformation" between them we say f and g are homotopic rel. base point if all H_{t} take x_{0} to y_{0} exercise: if $f \simeq g$ rel. base point, then $f_{*}=9_{*}$
two spaces X and Y are homotopy equivalent if there are continuous functions $f: X \rightarrow Y$ and $g: Y \rightarrow X$
such that
$f \circ g: Y \rightarrow Y$ is homotopic to the identity on Y, and

$$
g \circ f: x \rightarrow x \text { « " " } x
$$

f is called a homotopy equivalence and g its homotopy civerse denote this by $X \simeq Y$ or $X \simeq_{f} Y$
If the homotopies in the definition preserve the base point, then we say X and Y are based homotopy equivalent
lemma 4:
If $f: X \rightarrow Y$ is a based homotopy equivalence, then

$$
f_{*}: \pi_{1}\left(x, x_{0}\right) \rightarrow \pi_{1}\left(y_{1}, f\left(x_{1}\right)\right)
$$

is an isomorphism
Proof: let g be the homotopy inverse of f

$$
\begin{gathered}
\text { so } f \circ g \sim i d y \quad \therefore f_{*} \circ g_{*}=(f \circ g)_{*}=\left(i d_{y}\right)_{*}: \pi_{1}\left(Y, y_{0}\right) \rightarrow \pi_{1}\left(Y, y_{0}\right) \\
\pi_{1}\left(Y_{1} y_{0}\right) \xrightarrow{g_{*}} \pi_{1}\left(X, x_{0}\right) \xrightarrow{f_{*}} \pi_{1}\left(Y, y_{0}\right) \\
g_{g_{x} \cdot f_{x}=(i d y)_{x}=\dot{d}_{1} \pi_{1}\left(r_{1} y_{0}\right)} \leftarrow \text { bijective }
\end{gathered}
$$

and we f_{*} is surjective (and g_{x} injective) similarly $f_{*} \circ g_{*}=i d \pi_{1}\left(x_{x}\right)$ so f_{*} injective ie. f_{x} an isomorphism
examples:

1) $X=D^{n} \quad Y=\left\{x_{0}\right\} \quad x_{0}=\operatorname{origin}$ in D^{n}

Claim: $Y \simeq Y$ (based)
Proof: $f: X \rightarrow Y: X \rightarrow x_{0}$

$$
g: Y \rightarrow X: x_{0} \rightarrow x_{0}
$$

so $f \circ g: Y \rightarrow Y$ is identity on Y $g \circ f: X \rightarrow X: x \mapsto x_{0}$
and $F_{t}(x)=+x$ is a homofopy from $g \circ f$ to ${ }^{d} x_{\mu}$
So $\pi_{1}\left(D_{1}^{n} x_{0}\right) \cong \pi_{1}\left(\left\{x_{0}\right\}, x_{0}\right)$
note: there is exactly one function

$$
[0,1] \rightarrow\left\{x_{0}\right\}
$$

So $\pi_{1}\left(\left\{x_{0}\right\}, x_{0}\right)=\{e\}$ the trivial group

$$
\therefore \pi_{1}\left(D, x_{0}\right)=\{e\}
$$

2) If $f: x \rightarrow Y$ is a homeomorphism
then it is a homotopy equivalence, since $f \circ f^{-1}=i d y, f^{-1} \circ f=i d_{x}$
\therefore Lemma 5:
homeomorphic spaces are (based) homotopy equivalent (with correct choice of base points) and hence have the same fundamental group
note: homotopy equivalent homeomorphic (e.g. D^{n} and point)
3) $A=S^{\prime} \times[0,1]$ and $B=S^{\prime}$

Claim: $A \simeq S^{\prime}$
Proof: $f: S^{\prime} \times[0,1] \rightarrow S^{\prime}:(x, y) \mapsto x$

$$
\begin{aligned}
& g: S^{\prime} \longrightarrow S^{\prime} \times[0,1]: x \mapsto(x, 0) \\
& f \circ g: S^{\prime} \rightarrow S^{\prime}: x \mapsto x \quad \text { so } f \circ g=\left(\delta_{S^{\prime}}\right. \\
& g \circ f: S^{\prime} \times[0,1] \rightarrow S^{\prime} \times[0,1]:(x, y) \longmapsto(x, 0)
\end{aligned}
$$

note: $F_{f}(x, t)=(x, t y)$ is a homotopy g of to ${ }^{d} A$
so $\pi_{1}\left(S^{\prime} \times[0,1], x_{0}\right) \cong \pi_{1}\left(S^{\prime}, x_{0}\right)$
we compute π of S^{\prime} soon.

How does π_{1} depend on x_{0} ?
let $x_{0}, x, \in X$ and η be a path x_{0} to x_{1}
given a loop $\gamma:[0,1] \rightarrow X$ based at x_{1}, then

$$
\eta * \gamma * \bar{\eta}(s)= \begin{cases}\eta(3+1 & 0 \leq t \leq 1 / 3 \\ \gamma(3+-1) & 1 / 3 \leq t \leq 2 / 3 \\ \eta(1-(3 t-2)) & 2 / 3 \leq t \leq 1\end{cases}
$$

is a loop based at x_{0}

exercise: the map $\Phi_{\eta}: \pi_{1}\left(x, x_{1}\right) \rightarrow \pi_{1}\left(x, x_{0}\right)$ is a well-defined $[\gamma] \longmapsto[y * \gamma * \bar{y}]$ homomorphism.

Th ${ }^{m}$ 6:
$\Phi_{3}: \pi_{1}\left(x_{1}, x_{1}\right) \rightarrow \pi_{l}\left(x, x_{0}\right)$ is an isomorphism
Remark: So is omorphism class of $\pi_{1}\left(X, x_{0}\right)$ does not depend on choice of x_{0} in a path component of X
Proof: note $\Phi_{\bar{\eta}}$ is the inverse of Φ_{η}

$$
\Phi_{\bar{y}}\left(\Phi_{\eta}(\gamma)\right)=\bar{y} \times \eta \times \gamma \times \bar{y} * \eta \sim \gamma
$$

η

so $\Phi_{\bar{\eta}} \circ \Phi_{\eta}[\gamma]=[\gamma]$
similarly $\Phi_{3} \circ \Phi_{\bar{j}}=$ id

Th ${ }^{m}$ 7:
If $f: X \rightarrow Y$ is a homotopy equivalence (not nec. based homotopic) then $f_{*}: \pi_{1}\left(X, x_{0}\right) \rightarrow \pi_{1}\left(Y, f\left(x_{0}\right)\right)$ is an isomorphism

Proof: let $g: Y \rightarrow X$ be a homotopy inverse
so $g \circ f \simeq i d_{x}$ by a homotopy $H_{+} \quad\left(H_{0}=i d_{x}, H_{1}=g \circ f\right)$
let $\eta(t)=H_{t}\left(x_{0}\right)$
Claim: $\Phi_{\eta} \circ(g \circ f)_{*}=i_{\pi_{1}}\left(x, x_{0}\right)$
Proof: given $[\gamma] \in \pi_{1}\left(x, x_{0}\right)$
we need $\Phi_{\eta} \circ(g \circ f) \circ \gamma \sim \gamma$, which we have by

so (got) is an isomorphism
$\therefore g_{*}$ is surjective and f_{*} injective
similarly ($f \circ g)_{*}$ an isomorphism
$\therefore g_{x}$ is infective and f_{x} surjecitive so f_{*} an isomorphism
B. Fundamental group of S^{\prime}

It is surprisingly involved to compute $\pi_{1}\left(S^{\prime}, x_{0}\right)$
but the method is very important!
let $\rho: \mathbb{R} \rightarrow s^{\prime}: x \longmapsto(\cos 2 \pi x, \sin 2 \pi x)$
set $A=S^{\prime}-\{(1,0)\}$

$$
P^{-1}(A)=\bigcup_{i \in \mathbb{Z}} \underbrace{(i, i+1)}_{A_{i}}
$$

note: $\left.P\right|_{A_{1}}: A_{2} \rightarrow A$ is a homeomorphism (clearly invertable, check inv. is Continuous)
similarly for $B=S^{\prime}-\{(-1,0)\}$
then $P^{-1}(B)=\bigcup_{1 \in \mathbb{Z}} \underbrace{(\imath-1 / 2, \imath+1 / 2)}_{B_{i}}$
and $\left.P\right|_{B_{1}}: B_{1} \rightarrow B$ a homeomorphism
Obvious but important observation:
if $f: X \rightarrow S^{\prime}$ has inge in A, then after choosing an integer i
\exists unique map

$$
\tilde{f}: x \rightarrow A_{1} \subset \mathbb{R}
$$

such that $p \circ \tilde{f}=f$
1.e. set $\tilde{f}=\left(\left.p\right|_{A_{i}}\right)^{-1} \circ f$
similarly for $f(x) \subset B$.
now given a loop $\gamma:\{0,1] \rightarrow S^{\prime}$ based at $(1,0)$ we want to "lift" $i t$ to \mathbb{R} that is we want a map $\tilde{\gamma}:[0,1] \rightarrow \mathbb{R}$ such that $\rho \circ \tilde{\gamma}=\gamma$
If image $\gamma \subset A$ or B then easy!
note: $\{A, B\}$ is an open cover of S^{\prime}
so $\left\{\gamma^{-1}(A), \gamma^{-1}(B)\right\}$ is an open cover of $[0,1]$
$[0,1]$ is compact metric space, so \exists a Lebesgue number $\delta>0$ for cover (.e. any set with diameter $<\delta$ is in $\gamma^{-1}(A)$ or $\gamma^{-1}(B)$)
choose n such that $\frac{1}{n}<\delta$
let $I_{i}:\left[\frac{n-1}{n} \frac{1}{n}\right]$

note: 1) diam $I_{2}<\delta$ so $I_{2} \subset \gamma^{-1}(A)$ or $\gamma^{-1}(B)$
2) $\gamma(0)=(1,0)$ so $\gamma\left(I_{1}\right) \subset B$
so we can lift $\left.\gamma\right|_{I_{1}}$ to $B_{0} \subset \mathbb{R}$

$$
\text { ese } \tilde{\gamma}_{1}=\left.\left(\left.p\right|_{B_{0}}\right)^{-1} \circ \gamma\right|_{I_{1}}
$$

note: $\tilde{\gamma}_{1}(0)=0$
now $\gamma\left(I_{2}\right) \subset A$ or B so we can lift $\gamma I_{I_{2}}$ to \mathbb{R} we choose lift \tilde{f}_{2} so that $\tilde{\gamma}_{1}(1 / a)=\tilde{\gamma}_{2}(1 / n)$ we inductively lift all the $\gamma I_{I_{m}}$ to get $\tilde{\gamma}_{1}, \ldots, \tilde{\gamma}_{n}$ since these lifts all agree at the end points, we get a continuous lift

$$
\tilde{\gamma}:[0.1] \rightarrow \mathbb{R}
$$

of $\gamma:[0,1] \rightarrow 5^{\prime}$
$I_{1} I_{2} I_{3} I_{4} I_{5}$
example:

note: $\tilde{\gamma}(1) \in \rho^{-1}((1,0))=\boldsymbol{z}$
we have proven
Th ${ }^{\text {m }} 8$ (path lifting):
If $\gamma:[0,1] \rightarrow S^{\prime}$ is a path based at $(1,0)$, then for each $n \in \mathbb{Z}$
\exists a unique map $\tilde{\gamma}_{n}:[0,1] \rightarrow \mathbb{R}$ such that

$$
\begin{aligned}
& \tilde{\gamma}_{n}(0)=n \text { and } \\
& p \circ \tilde{\gamma}_{n}=\gamma
\end{aligned}
$$

more generally, if $\gamma:[0,1] \rightarrow S^{\prime}$ is an un based loop, then there is a uncive lift $\tilde{\gamma}$ once a point in $\rho^{-1}(\gamma(0))$ is chosen
we can define a map

$$
\begin{aligned}
\phi: \pi_{1}\left(s_{1}^{\prime}(1,0)\right) & \longrightarrow \mathbb{Z} \\
{[\gamma] } & \longmapsto \tilde{\gamma}_{0}(1)
\end{aligned}
$$

Thㅡㅡ 9:
ϕ is well-defined and an isomorphism
so $\pi_{1}\left(S_{1}^{\prime},(1,0) \cong \mathbb{Z}\right.$
to prove this we need
The 10 (Homotopy lifting):
Given a continuous map $H:[0,1] \times[0,1] \rightarrow 5^{\prime}$
\exists a contrivious map $\tilde{H}:[0,1] \times[0,1] \rightarrow \mathbb{R}$
such that $p \circ \tilde{H}=H$
Moreover, \tilde{H} is unique once we have chosen a point $\tilde{x}_{0} \in P^{-1}(H(0,0))$ and require $\tilde{H}(0,0)=\tilde{x}_{0}$

Proof: just like proof of path lifting
let δ be Lebesque number for $\left\{H^{-1}(A), H^{-1}(B)\right\}$ and pick n s.t. $\frac{\sqrt{2}}{n}<\delta$ then consider

Heachsquare in A or B so can be lifted
exercise: Write out the details
Proof of Th ${ }^{m}$ 9:
if $\gamma \simeq \delta$ as based loops in $\left(S_{1}^{\prime}(1,0)\right)$
let H be the homotopy
let \tilde{H} be the lift of H such that $\tilde{H}(0,0)=0$
note: 1) $\rho \circ \tilde{H}_{0}(s)=H_{0}(s)=\gamma(s)$ so $\tilde{H}_{0}(s)$ is a lift of γ, starting at 0

$$
\text { 2) }\left.\tilde{H}\right|_{\{0\} \times\{0,1]}: \begin{gathered}
\text { so } \tilde{\gamma}_{0}=\tilde{H}_{0} \\
{[0,1] \rightarrow p^{-1}(H(\{0\} \times\{0,1)))=p^{-1}((1,0))=\mathbb{Z}^{*} \begin{array}{c}
\text { discrete } \\
\text { topology }
\end{array}}
\end{gathered}
$$

so $\hat{H}(0, t)$ is constant since $\tilde{H}(0.0)=0$, we see $\tilde{H}(0, t)=0$
3) $p \circ \tilde{H}_{1}(s)=H_{1}(s)=\delta(s)$ so \tilde{H}_{1} is a lift of δ starting at 0

$$
\therefore \tilde{\delta}_{0}=\tilde{H}_{1}
$$

$$
\therefore \tilde{\gamma}(1)=\tilde{H}(1,0)=\tilde{H}(1,1)=\tilde{\delta}(1)
$$

same agrt. as 2)
so ϕ is well-defined
ϕ onto: let $f_{n}:[0,1] \rightarrow \mathbb{R}: x \mapsto n x$
note: $\gamma_{n}=$ po f_{n} is a loop in S^{\prime} based at $(1,0)$
that lifts to f_{n}
so $\phi\left(\left[\gamma_{n}\right]\right)=n$
$\therefore \phi$ onto
ϕ homomorphism:

$$
\text { let }\left[\gamma_{1}\right],\left[\gamma_{2}\right] \in \pi_{1}\left(S_{1}^{\prime}(1,0)\right)
$$

let $\tilde{\gamma}_{2}$ be the lift of γ_{2} based at 0
set $n=\tilde{\gamma}_{1}(1)$ and $m=\tilde{\gamma}_{2}(1)$
define: $\tilde{\tilde{\gamma}}_{2}(s)=n+\tilde{\gamma}_{2}(s)$
note:

$$
\begin{aligned}
\rho \circ \tilde{\tilde{\gamma}}_{2} & =\left(\cos \left(2 \pi\left(n+\tilde{\gamma}_{2}\right)\right), \sin \left(2 \pi\left(n+\tilde{\gamma}_{2}\right)\right)\right) \\
& =\left(\cos \left(2 \pi \tilde{\gamma}_{2}\right), \sin \left(2 \pi \tilde{\gamma}_{2}\right)\right)=\rho \circ \tilde{\gamma}_{2}=\gamma_{2}
\end{aligned}
$$

so $\widetilde{\tilde{\gamma}}_{2}$ is a lift of γ_{2} st. $\widetilde{\tilde{\gamma}}_{2}(0)=n$
clearly $\tilde{\gamma}_{1} * \widetilde{\gamma_{2}}$ is o lift of $\gamma_{1} * \gamma_{2}$ based at 0
and $\tilde{\gamma}_{1} * \tilde{\gamma}_{2}(1)=n+m$
so $\phi\left(\left[\gamma_{1}\right] *\left[\gamma_{2}\right]\right)=\phi\left(\left[\gamma_{1}\right]\right)+\phi\left(\left[\gamma_{2}\right]\right)$
ϕ infective:
we check $\operatorname{ker} \phi=\{e\}$
if $[\gamma] \in \operatorname{ker} \phi$, then the life $\tilde{\gamma}$ of γ based at 0
has $\tilde{\gamma}(1)=0$
that is $\tilde{\gamma}(s)$ a loop in \mathbb{R} based at 0
set $\tilde{H}(s, t)=+\tilde{\gamma}(s)$
note: 1) $\tilde{H}(s, 0)=0$
2) $\tilde{H}(s, 1)=\tilde{\gamma}(s) \quad\{\tilde{H}$ a homotoay $\tilde{\gamma}$
3) $\tilde{H}(0, t)=\tilde{H}(1, t)=0$ to constant loop
let $H=p \circ \tilde{H}$
H is a homotopy of γ to the constant loop e
C. Applications
given a map $f: s^{\prime} \rightarrow s^{\prime}$
let $\bar{f}:\{0,1] \rightarrow S^{\prime}$ be the map $f \circ g=\bar{f}$

$$
\begin{array}{ll}
{[0,1]} \\
1 q & \text { where } \\
s^{\prime} \xrightarrow[f]{\prime} & q(t)=(\cos 2 \pi t, \sin 2 \pi t)
\end{array}
$$

Th -8 says there is a unique lift $\tilde{f}:[0,1] \rightarrow \mathbb{R}$ of \bar{f} once we choose lift of $\bar{f}(0)$
we now define the degree of f to be the number

$$
\operatorname{deg} f=\tilde{f}(1)-\tilde{f}(0)
$$

note: if \hat{f} is another such lift then $\hat{f}(s)=\tilde{f}(s)+k$ for some k

$$
\text { so } \hat{f}(1)-\hat{f}(0)=\tilde{f}(1)+k-(\tilde{f}(0)+k)=\tilde{f}(1)-\tilde{f}(0)
$$

and the degree is well-defived

Th m / 1:
$f: s^{\prime} \rightarrow s^{\prime}$ and $g: s^{\prime} \rightarrow s^{\prime}$ are homotopic
\Leftrightarrow

$$
\operatorname{deg} f=\operatorname{deg} g
$$

Proof: \Leftrightarrow let $F: S^{\prime} \times[0,1] \rightarrow S^{\prime}$ be the homotopy let $\bar{F}:\{0,1] \times[0,1] \rightarrow S^{\prime}$ be the map such that

$$
F(q(s), t)=\bar{F}(s, t)
$$

let \tilde{F}, \tilde{g} be lifts of \bar{f} and \bar{g}

as above
by $T^{m}{ }^{m} 10 \exists$! lift of \bar{F} to $\tilde{F}:[0,1] \times[0,1] \rightarrow \mathbb{R}$ with $\bar{F}(0,0)=\tilde{f}(0)$ by uniqueness of path lifting we know

$$
\tilde{F}(s, 0)=\tilde{F}(s) \text { since } \tilde{F}(s, 0) \text { is a lift of } \bar{f}
$$

let $\gamma:\{0,1] \rightarrow s^{\prime}:+\mapsto \bar{F}(0, t)=\bar{F}(1, t)$
Set $\tilde{\gamma}:[0,1] \rightarrow \mathbb{R}$ lift of γ set. $\tilde{\gamma}(0)=\tilde{f}(0)$
$\tilde{\gamma}^{\prime}:[0,1] \rightarrow \mathbb{R}$ lift of γ st. $\tilde{\gamma}^{\prime}(0)=\tilde{f}(1)$
we can assume $\tilde{g}(0)=\tilde{\gamma}(1)$
note we have \widetilde{F} given by

so $\operatorname{deg} f=\tilde{F}(1,0)-F(0,0)=\tilde{\gamma}^{\prime}(0)-\tilde{\gamma}(0)$

$$
\operatorname{deg} g=\tilde{F}(1,1)-\tilde{F}(0,1)=\tilde{\gamma}^{\prime}(1)-\tilde{\gamma}(1)
$$

but $\tilde{\gamma}^{\prime}(t)=\tilde{\gamma}(t)+k$ some k and $\operatorname{deg} f=\operatorname{deg} g$
(\Leftarrow) assume $\operatorname{deg} f=\operatorname{deg} g$
let θ be the angle between $f(1,0)$ and $g(1,0)$ let $R_{t}: S^{\prime} \rightarrow S^{\prime}$ be rotation through angle t
set $H(s, t)=R_{t \theta} \circ f(s)$
So $H(s, 0)=f(s)$

$H(s, 1)=R_{\theta} \circ f(s)$ ie $H((1,0), 1)=R_{\theta} \circ f((1,0))=g((1,0))$
so after homotopy we can assume $f((1,0))=g((1,0))$
(from \Leftrightarrow) we know deg f unchanged under hoy)
let $\bar{f}_{1} \bar{g}:[0,1] \rightarrow S^{\prime}$ be as above (note $\bar{f}(0)=\bar{g}(0)$ by above) let $\tilde{f}, \tilde{g}:[0,1] \rightarrow s^{\prime}$ be lifts of \bar{f}, \bar{q}, respectively st. $\tilde{f}(0)=\tilde{q}(0)$
now $\operatorname{deg} f=\operatorname{deg} g \Rightarrow \tilde{F}(1)=\tilde{q}(1)$
set $\tilde{H}(s, t)=+\tilde{f}(s)+(1-t) \tilde{g}(s)$
note:

$$
\begin{aligned}
& \tilde{H}(0, t)=t \tilde{f}(0)+(1-t) \tilde{g}(0)=\tilde{f}(0) \\
& \tilde{H}(1, t)=+\tilde{f}(1)+(1-t) \tilde{g}(1)=\tilde{f}(1)
\end{aligned}
$$

so $p \circ \tilde{H}_{t}:[0,1] \rightarrow s^{\prime}$ decends to a map $H_{t}: s^{\prime} \rightarrow s^{\prime} \forall t$ H_{t} give homotopy of f to g
exercise: 1) the constant map $f: S^{\prime} \rightarrow S^{\prime}$ has degree 0
2) $f_{*}: \pi_{1}\left(S^{\prime},(1,0)\right) \rightarrow \pi_{1}\left(S^{\prime},(1,0)\right)$ is multiplication by deg f ne. $\mathbb{Z} \rightarrow \mathbb{Z}$ $[\gamma] \longmapsto($ leg $f)[\gamma]$ need to homotop f to preserve base pt!

Corollary 12:
two maps $f, g: S^{\prime} \rightarrow S^{\prime}$ are homotopic

$$
f_{*}=g_{*}: \pi_{1}\left(S_{1}^{\prime}(1,0)\right) \rightarrow \pi_{1}\left(s_{1}^{\prime}(1,0)\right)
$$

In particular, $f: S^{\prime} \rightarrow S^{\prime}$ is homotopically trivial \Leftrightarrow it induces trivial map on $\pi_{1}\left(S_{1}^{\prime}(1,0)\right)$

Proof: imedicite from exercises
Remark: so maps on s^{\prime} are completely determined by π !
lemma / 3:
a map $f: S^{\prime} \rightarrow S^{\prime}$ extends to a map $F: D^{2} \rightarrow S^{\prime}$

$$
\operatorname{deg} f=0
$$

Proof: (\Rightarrow) let $P:[0,1] \times s^{\prime} \rightarrow D^{2}$

$$
(r, \theta) \longmapsto(r, \theta) \underset{\text { polar lords }}{\longleftrightarrow})
$$

given $F: D^{2} \rightarrow S^{1}$ such that $F l_{\partial D^{2}}=f$
set $H(s, t)=F \circ P(s, t)$
this is a homotopy from

$$
H(s, 0)=F \cdot p(s, 0)=F(0, s)=p t
$$

to
C origin

$$
H(s, 1)=F \circ P(s, 1)=F l_{\partial D^{2}}=f(s)
$$

so $f \simeq$ constant $\therefore \operatorname{deg} f=0$
(\Leftarrow) if $\operatorname{deg} f=0$, then \exists a homotopy $H: s^{\prime} \times[0,1] \rightarrow s^{\prime}$
s.t. $H(s, 1)=f(s)$ and $H(s, 0)=$ pt
so we get an induced map
$F: D^{2} \rightarrow S^{\prime}$ that
extends f
exercise:
think of S^{\prime} as the cult circle in \mathbb{C}
let $f_{n}: s^{\prime} \rightarrow s^{\prime}: z \longmapsto z^{n}$
show $\operatorname{deg}\left(f_{n}\right)=n$

Th m 14 (Fundamental Th ㄹ of Algebra):
any non-constant complex polynomial $P(z)$ has a root ne. z_{0} such that $P\left(z_{0}\right)=0$

Remark: Amazing! We are using algebraic topology to prove basic facts about polynomials!
Proof: let $P(z)=z^{n}+a_{n-1} z^{n-1}+\ldots+a_{1} z+a_{0} \quad n \geq 1$
assume $P(z)$ has no root
let $M=\max \left\{\left|a_{0}\right|, \ldots,\left|a_{n-1}\right|\right\}$ and choose $k \geq \max \left\{1, Z_{n} M\right\}$
note: $P(z)=z^{n}(1+\underbrace{\left.a_{n-1} \frac{1}{z}+\ldots+a_{1} \frac{1}{z^{n-1}}+a_{0} \frac{1}{z^{n}}\right)}_{b(z)}$
so if $|z|=k$, then

$$
\begin{aligned}
|b(z)| & \leq\left|a_{n-1}\right| \frac{1}{|z|}+\ldots+\left|a_{0}\right| \frac{1}{|z|^{n}} \\
& \leq M\left(\frac{1}{k}+\ldots+\frac{1}{k^{n}}\right) \leq M \frac{n}{k} \\
& \leq M \frac{n}{2 n M}=\frac{1}{2}
\end{aligned}
$$

let $f: s^{\prime} \rightarrow s^{\prime}: z \longmapsto \frac{P(h z)}{|p(k z)|}$ well-detived since never zero by assumption
this extends to

$$
F: D^{2} \rightarrow S^{\prime}: z \mapsto \frac{P(k z)}{|P(k z)|}
$$

so $\operatorname{deg} f=0$ by lemma 14
but let $P_{t}(z)=z^{n}(1+t b(z))$
from above $P_{t}(z) \neq 0$ for $|z|=k$
so $f_{t}: s^{\prime} \rightarrow s^{\prime}: z \mapsto \frac{P_{t}(k z)}{\left|P_{t}(k z)\right|}$
is a homotopy from f to $f_{1}(z)=\frac{(k z)^{n}}{|k z|^{n}}=\frac{k^{n} z^{n}}{k^{n} \underbrace{|z|^{n}}_{11}}=z^{n}$
deg $f_{1}=n \neq 0 \quad \otimes f \simeq f_{1}$ by $T_{1} m_{1} 12$
$\therefore P(z)$ has a root!
lemma 15:
-
If $f: s^{\prime} \rightarrow s^{\prime}$ is continuous and $f(-x)=-f(x) \forall x$
then $\operatorname{deg}(f)$ is odd
Proof: given such an $f: s^{\prime} \rightarrow s^{\prime}$
let $\bar{f}:[0,1] \rightarrow s^{\prime}$ be as above (ie. $f \circ g=\bar{f}$)
let $a=\bar{f}(0)$ and $p^{-1}(a)=\left\{\tilde{a}_{2}\right\}$ where $p: \mathbb{R} \rightarrow S^{\prime}$ and

$$
\tilde{a}_{2}=\tilde{a}_{0}+i
$$

note $\bar{f}(1 / 2)=f((-1,0))=-f((1,0))=-a$ and
$p^{-1}(-a)=\left\{\tilde{b}_{2}\right\}$ where $\tilde{b}_{2}=\tilde{a}_{2}+\frac{1}{2}$
let $f_{1}=\left.\bar{f}\right|_{[0,1 / 2]}$

$$
f_{2}=\left.\bar{f}\right|_{[1 / 2,1]}
$$

since $f(x)=f(-(-x))=-f(-x)$
and

$$
q(x-1 / 2)=-q(x)
$$

we have $f_{2}(x)=\bar{f}(x)=f(g(x))$

$$
=-f(-q(x))=-f(q(x-1 / 2))=-\bar{f}(x-1 / 2)=-f_{1}(x-1 / 2)
$$

so if \tilde{f}_{1} is a lift of f_{1} starting at \tilde{a}_{0} then $\tilde{f}_{1}(1 / 2)=\tilde{b}_{2}$ some i and $\tilde{f}_{1}(x-1 / 2)+1 / 2$ is a lift of $f_{2}:[1 / 2,1] \rightarrow s^{\prime}$ starting at $\tilde{a}_{0}+1 / 2=\tilde{b}_{0}$
$\tau_{\text {Just like for } q \text { above } p(x-1 / 2)=-p(x)}$
so $\tilde{f}_{2}(x)=\tilde{f}_{1}(x-1 / 2)+1+1 / 2$ is a lift of f_{2} starting at $\tilde{f}_{1}(1 / 2)=\tilde{b}_{2}$
now $\tilde{f}_{2}(1)=\tilde{f}_{1}(1 / 2)+2+1 / 2=\tilde{b}_{2}+1+1 / 2=\tilde{q}_{2}+1+1=\tilde{a}_{0}+2 i+1$
note $\tilde{f}_{1} * \tilde{f}_{2}$ is a lift of f

$$
\text { so } \operatorname{deg}(f)=\tilde{f}_{1} \times \tilde{f}_{2}(1)-\tilde{f}_{1} \times \tilde{f}_{2}(0)=\tilde{a}_{0}+2 \imath+1-\tilde{q}_{0}^{2}=2 i+1
$$

Th 픅 (Borsuk-Ulam I):
There does not exist a continuous map

$$
f: s^{2} \rightarrow s^{1}
$$

sending antipodal porits to antipodal porits
Proof: If $f: s^{2} \rightarrow s^{\prime}$ is such a map then let $S^{\prime} \subset S^{2}$ be the equator

$$
\left.f\right|_{s^{\prime}}: s^{\prime} \rightarrow s^{\prime} \text { satisfies } f(-x)=-f(x)
$$

so $\operatorname{deg} \mathrm{fl}_{\mathrm{s}^{\prime}}$ is odd by lemma 15
but $\mathrm{fl}_{s^{\prime}}$ extends oven northern hemisphere
so $\operatorname{deg} f I_{s^{\prime}}=0$ by lemma $13 \$$
Th m 17 (Borsuk-Ulam II):
Any continuous map $f: S^{2} \rightarrow \mathbb{R}^{2}$ must send a pair of antipodal points to the same point

Proof: given any continuous $f: s^{2} \rightarrow \mathbb{R}^{2}$
assume $f(x) \neq f(-x) \quad \forall x \in s^{2}$
then consider $g: s^{2} \rightarrow s^{\prime}: x \longmapsto \frac{f(x)-f(-x)}{\|f(x)-f(-x)\|}$
exercisé: g is continuous
clearly $g(-x)=-g(x) \ngtr \mathbb{T h}^{m} / 6$
Remark: Th ${ }^{m}$ implies that at any point in time there are antipodal point on the earth with the same temperature and humidity! (or pick your favorite continuously varying quantities)

Th ${ }^{\underline{m}} 18$ (Ham sandwich th ${ }^{m}$):
let R_{1}, R_{2}, R_{3} be three connected open regions in \mathbb{R}^{3} each of which is bounded and of finite volume Then \exists a plane which cuts them in half by volume

Proof: let $s^{2} \subset \mathbb{R}^{3}$ be a large sphere about origin containing all R_{i}. given $x \in S^{2}$, let l_{x} be the line through x and origin
for each i, \exists plane $P_{i, x}$ perpendicular to l_{x} that cuts R_{i} in half

let $d_{i}(x)=$ distance of $P_{1, x}$ from origin (where $d_{2}(x)>0$ if $P_{2 x}$ on same side of origin as x)
exercise: Show $d_{1}(x)$ are continuous functions $d_{2}: s^{2} \rightarrow \mathbb{R}$
Hint: Equation of planes perpendicular to l_{x} continuously vary with x
Volume of regions of R_{i} cut by plane continuously vary with eq of plane
clearly $d_{i}(-x)=-d_{2}(x)$
consider $f: S^{2} \rightarrow \mathbb{R}^{2}: x \mapsto\left(d_{1}(x)-d_{2}(x), d_{1}(x)-d_{3}(x)\right)$
Th ${ }^{m} 17 \Rightarrow \exists x$ such that $f(x)=f(-x)$
so $d_{1}(x)-d_{2}(x)=d_{1}(-x)-d_{2}(-x)=-d_{1}(x)+d_{2}(x)$

$$
\therefore \quad 2 d_{1}(x)=2 d_{2}(x) \Rightarrow d_{1}(x)=d_{2}(x)
$$

similarly $d_{3}(x)=d_{1}(x)=d_{2}(x)$
so \exists plane \perp to l_{x} that cuts R_{1}, R_{2}, R_{3} in half!

